

 Universiteit Utrecht

Theory Construction and Statistical Modeling

Welcome!

Lecturer

Caspar van Lissa

- Assistant professor
- Lectures
- Course coördinator

Benefits of using R

- It's free
- You can install it anywhere, even run online
- EVERY analysis is available in R
- Reproducible research
- Beautiful graphics
- Lots of help/support in online forums
- Easily interface with other programs

Before, we used SPSS and AMOS

IBM SPSS Statistics

Statistical analysis is now even easier. Try SPSS Statistics for free to understand why. Starting at \$99.00 USD per user per month.

 \rightarrow Student edition available

IBM SPSS Amos Concurrent User Initial Fixed Term License + SW Subscription & Support 12 Months

£1,719.00 excl VAT

- Expensive (even if you get a subsidized discount)
- Closed source, so hard to verify if calculations are correct
- Slow to develop new functionality

Before, we used SPSS and AMOS

- Little demand on the job market (from r4stats.com)
- Large part of the course devoted to just dealing with the interface

What does R give you?

- You have to learn new software anyway why not something useful?
- Saves time
- Saves money
- It's a real life/job skill
 - R can help you get jobs
 - R can make your job easier
- People will take you more seriously (seriously!)
- Develop logical reasoning skills
- High threshold: You can use R to automate many things (e.g., the GitBook is written in R)

Philosophy of "learning R"

- **Don't** try to "learn R"
 - It's too big
 - Everything you can think of is possible in R
 - Just focus on one task at a time
- Copy-paste code, then adapt it
 - From manual, from previous exercise, from internet
 - Make small changes when necessary
 - Check that it works as expected
- Learn and understand as you go
- Use the Help function in R: ?hist, or select function and press F1
- Google "how to ... in R" a LOT
 - E.g., "how to make histogram in R"
 - Stackexchange and R-bloggers are great

chol <- read.table(url("http://assets.datacamp.com/bi</pre>

2. Familiarize Yourself With The Hist() Function

You can simply make a histogram by using the **hist()** function, which computes a histogram of the given data values. You put the name of your dataset in between the parentheses of this function, like this:

script.R R Console

1 hist(AirPassengers)

WHAT IS A MODEL?

What is a model?

- A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics
- A simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions
- Clearly defined level of analysis, operationalized variables, specified relationships between variables (see: Smaldino)

What will you learn in TCSM?

- How to translate a (verbal) social scientific theory into a statistical model
- How to analyze your data with these models
- How to interpret and report your results

What will you learn in TCSM?

- How to test a specific theory with an appropriate statistical model (Confirmatory)
- How to fit the model to data and reflect back to substantive theory? (Exploratory)

- Starting point:
 - Already have an appropriate (quantitative) dataset
 - Focus on data analysis: modeling

Statistical Model

- Explicates our ideas about how our observed data was generated
- We have observed **variables** with certain **characteristics**
- We develop a model to explain those characteristics

Variables and Characteristics

- What is a variable?
 - Anything that can vary i.e., take on different values
 - Height, age, intelligence, diagnosis, happiness...
- What are possible characteristics of variables?
 - By themselves (univariate): mean, variance
 - How they relate to another variable (bivariate): correlation/covariance

Univariate

age

Bivariate

Husband's age

Covariance – to what degree one varies along with the other Correlation – covariance transformed (-1,1)

Statistical Models

- We observe that husband's and wife's age covary
- What kind of model could we fit to this observed data?
- We could theorize that husband's age determines wife's age
 - Older men "choose" older wives
 - This relationship is linear

Linear regression model

Linear regression model $WA_i = b_0 + b_1 HA_i + e_i$

What makes up a model?

- Models are made up of variables and parameters
- Parameters are anything in the model that we must estimate

$$WA_i = b_0 + b_1 HA_i + e_i$$

 $WA_i = \mathbf{b_0} + \mathbf{b_1} HA_i + e_i$

 $WA_i = b_0 + b_1 HA_i + e_i$

Factor analysis

- Many theories in the social sciences relate to variables which cannot be **directly observed**
 E.g. depression, personality traits, intelligence
- Instead we try to infer things about these unobservable variables based on what we can observe
 - High scores on IQ test items is taken to reflect high levels of intelligence
- We can call these types of variables latent variables or factors

History of Structural Equation Modeling

Structural Equation Modeling

- A General Framework encompassing:
 - Linear models: regression, AN(C)OVA, Factor
 Analysis
 - And any/all combinations
 - Translation of theories with many components
 - Mediation, Moderation
 - Mainly confirmatory but allows for exploratory model search

Path Diagram: Graphical representation of SEM

See the vignette at https://cjvanlissa.github.io/tidySEM/articles/sem_graph.html

Observed variable

Latent (unmeasured) variable (or factor)

Regression (Theoretical) Causal effect * Direct Effect *

Covariance

(no causal hypothesis)

Variance when going from X to X

Regression model

Regression model

 $Grade_i = b_1 * T_study_i + e_i$

Multiple regression model

Path model

- Direct effects / regression coefficients

- Covariances
- Variances

Exploratory factor analysis model

- Factor loadings
- Covariances
- Variances

Confirmatory factor analysis model

- Factor loadings
- Covariances
- Variances

Structural equation model

Interpretation of parameters

- Direct effects, b, (X \rightarrow Y) as regression coefficients
 - If X goes up with 1 point, y is expected to go up with b points (controlling for other predictors).
 - If X goes up with 1 SD, y is expected to go up with b SD (controlling for other predictors).
- Factor loadings are direct effects from a factor to an indicator
- Covariances (unstandardized) and correlations (standardized)
- Variances and residual variances

Structural Equation Models

- Some assumptions:
 - Multivariate normality of (residuals of) endogenous (outcome) variables (with ML estimation)
 - But there are solutions for categorical data etc (not in this course)
 - Relationships are linear (unless otherwise specified)
 - Independence of observations
 - Exogenous (predictor) variables are measured without error
 - The model is correctly specified

How do Structural Equation Models work?

- They compare an observed covariance matrix to a model-implied covariance matrix
- Can accommodate complex theories and assumptions
- Evaluate fit: Does the model account for the observed variances and covariances?
 - If our theory says time studying predicts grades, but the observed covariance is zero in our observed data, we have a bad model

FIT AND COMPLEXITY

Choosing Models

- "All models are wrong but some are useful." George E.P. Box
- "the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." A. Einstein
- "For every complex question there is a simple and wrong solution." H.L Mencken

Occam's Razor

 For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives

Occam's Razor

 For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives

Occam's Razor

 For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives

• Prefer simplest possible model for the data that still fits reasonably well

- Simple = Parsimonious

Choosing Statistical Models

Fit vs complexity

$$WA_i = b_0 + b_1 HA_i + e_i$$

 WA_i = $b_0 + b_1 HA_i + b_2 HA^2 + b_3 HA^3$ + $b_4 HA^4 + \dots + e_i$

Fit vs Complexity

• Choosing between competing statistical models is a balance between fit and complexity

• Fit

- How well does the model describe the data
- Complexity
 - How many parameters are estimated in the model? **

**Other definitions possible – this is sensible when comparing linear models, and so is the definition we will be using throughout

Defining fit

- How well does the model explain the data?
- In regression, the data are individual values on the dependent variable
- In e.g. regression, the data are observations about participants
 - Fit is defined in terms of residual variance in the dependent variable
- In SEM, the data are the covariance matrix of your variables

Covariance Matrix

We can summarize relationships between n_var variables in a $n_var \times n_var$ variance/covariance matrix

	Hus_age	Wife_age
Hus_age	s_{Y1}^2	
Wife_age	S_{Y1Y2}	s_{Y2}^2

Observed Covariance Matrix

Covariance Matrix

We can summarize relationships between n_var variables in a $n_var \times n_var$ variance/covariance matrix

	Hus_age	Wife_age
Hus_age	s_{Y1}^2	
Wife_age	S_{Y1Y2}	s_{Y2}^2

Observed Covariance Matrix

Covariance Matrix

We can summarize relationships between n_var variables in a $n_var \times n_var$ variance/covariance matrix

Note: We also have information about the *means* of each variable. We will ignore this for now, until <u>week 4</u>

Regression model

	Hus_age	Wife_age
Hus_age	s_{Y1}^2	
Wife_age	S_{Y1Y2}	s_{Y2}^2

Observed Covariance Matrix

Regression model $\sigma_{Y_1}^2$ b_1 Hus_age b_1 Wife_age $1 \in \varepsilon$

 $Wife_age_i = b_1 * Hus_age_i + e_i$

	Hus_age	Wife_age
Hus_age	s_{Y1}^2	
Wife_age	S_{Y1Y2}	S_{Y2}^2

Observed Covariance Matrix

Regression model $\sigma_{Y_1}^2$ b_1 Hus_age b_1 Wife_age $1 \in \varepsilon$

 $Wife_age_i = b_1 * Hus_age_i + e_i$

	Hus_age	Wife_age
Hus_age	σ_{Y1}^2	
Wife_age	<i>b</i> 1	$\sigma_{Y1}^2 b_1 + \sigma_e^2$

Model-implied Covariance Matrix

Defining complexity

The model "explains" the covariances between observed variables.

 Grades and Time-studying co-vary because Time studying has a direct effect on Grades

A good model is:

- Simple (fewest parameters)
- A good description of the data (good fit)
- More degrees of freedom == simpler model (good).
 But... simpler models fit worse to the data.

Pieces of information

- The "data" in SEM are observed variances/covariances
- These are the pieces of information

	Yı	Y2	Y ₃	Y ₄
Yı	s_{Y1}^2			
Y2	S_{Y1Y2}	s_{Y2}^2		
Y3	S_{Y1Y3}	S_{Y2Y3}	s_{Y3}^2	
Y4	S_{Y1Y4}	S _{Y2Y4}	S _{Y3Y4}	s_{Y4}^2
Covariance Matrix				

Structural Equation Models

- We can only estimate as many parameters as there are pieces of information
- Estimate parameters to describe the covariance matrix as well as possible
- More variables: more covariances, bigger models

	Yı	Y2	Y ₃	Y ₄
Yı	s_{Y1}^2			
Y2	S_{Y1Y2}	s_{Y2}^2		
Y ₃	S_{Y1Y3}	S_{Y2Y3}	s_{Y3}^2	
Y4	S_{Y1Y4}	S _{Y2Y4}	S _{Y3Y4}	s_{Y4}^2
Covariance Matrix				

Degrees of freedom

• We cannot estimate a model with more parameters than pieces of information

For example, solve for a:
3 = 5 - a → a = 2
b = 5 - a → a = ? Impossible to solve

• Our models must be **identified**:

 Less or equal parameters (q) than observed variances and covariances (p)

Degrees of freedom

- Our models must be **identified**:
 - Less or equal parameters (q) than observed variances and covariances (p)

• Degrees of freedom (df) = p - q

• p = nvar*(nvar+1) / 2

	Yı	Y2	Y ₃	Y4
Yı	4.5			
Y2	2.1	3.9		
Y ₃	1.9	2.6	4.1	
Y4	2.8	2.5	2.0	4.8

Model complexity in SEM

• Perfectly fitting (but very complex) model:

• Very simple (but ill fitting) model:

Model complexity in SEM

• Perfectly fitting (but very complex) model:

• Very simple (but ill fitting) model:

	Yı	Y2	Y ₃	Y4
Yı	σ_{Y1}^2			
Y2	0	σ_{Y2}^2		
Y ₃	0	0	σ_{Y3}^2	
Y4	0	0	0	σ_{Y4}^2

A model for grades

- We observe:
 - IntrMotiv
 - ExtrMotiv
 - Gender
 - Achiev
 - T_study
 - Grades
- How many observed variancescovariances?

A model for grades

- We observe:
 - IntrMotiv
 - ExtrMotiv
 - Gender
 - Achiev
 - T_study
 - Grades

	Yı	Y2	Y ₃	Y4	Y5	Y6
Yı	s_{Y1}^2					
Y2	S_{Y1Y2}	s_{Y2}^2				
Y ₃	S_{Y1Y3}	S _{Y2Y3}	s_{Y3}^{2}			
Y4	S _{Y1Y4}	S _{Y2Y4}	S _{Y3Y4}	s_{Y4}^2		
Y5	S_{Y1Y5}	S _{Y2Y5}	S_{Y3Y5}	S_{Y4Y5}	s_{Y5}^{2}	
Y6	S _{Y1Y6}	S _{Y2Y6}	S _{Y3Y6}	S _{Y4Y6}	S _{Y5Y6}	S_{Y6}^2

 How many observed variancescovariances?
 6 * 7/2 = 21

Which model is simpler?

How many degrees of freedom?

3 variances, 3 residual variances 3 covariances, 5 regression coefficients **{14 parameters in total}** Df= 21-14 = 7

Multiple regression model

5 variances, 1 residual variances 10 covariances, 5 regression coefficients **{21 parameters in total}**

Model fit

- Does the model fit the data? (Exact / approximate fit).
- Yes? Interpret parameter estimates, consider equivalent models. -> Confirmatory
- No? Re-specification -> Exploratory

Fit measure	Good	Acceptable	Bad
X ² (df)	Non-significant		Significant
RMSEA	< .05	<.08	>.10
CFI	> .95	>.90	

Many other indices: SRMR, TLI, RNR, GFI, AGFA, AIC, BIC etc. <u>http://davidakenny.net/cm/fit.htm</u>

Model fit: reasons for caution

1. Data can look completely different but have similar covariance matrices

Model fit: reasons for caution

Model fit: reasons for caution

- 1. Data can look completely different but have similar covariance matrices
- 2. Path models can have very different interpretations, but equivalent fits

