Universiteit Utrecht

Theory Construction and Statistical Modeling

Lecturer

- Caspar van Lissa
- Assistant professor
- Lectures
- Course coördinator

Benefits of using R

- It's free
- You can install it anywhere, even run online
- EVERY analysis is available in R
- Reproducible research
- Beautiful graphics
- Lots of help/support in online forums
- Easily interface with other programs

Before, we used SPSS and AMOS

IBM SPSS Statistics

Statistical analysis is now even easier. Try SPSS Statistics for free to understand
why. Starting at \$99.00 USD per user per month.

IBM SPSS Amos Concurrent User Initial Fixed
 Term License + SW Subscription \& Support
 12 Months

£1,719.00 excl Vat

- Expensive (even if you get a subsidized discount)
- Closed source, so hard to verify if calculations are correct
- Slow to develop new functionality

Before, we used SPSS and AMOS

- Little demand on the job market (from r4stats.com)
- Large part of the course devoted to just dealing with the interface

What does R give you?

- You have to learn new software anyway - why not something useful?
- Saves time
- Saves money
- It's a real life/job skill
- R can help you get jobs
- R can make your job easier
- People will take you more seriously (seriously!)
- Develop logical reasoning skills
- High threshold: You can use R to automate many things (e.g., the GitBook is written in R)

Philosophy of "learning R"

- Don't try to "learn R"
- It's too big
- Everything you can think of is possible in R
- Just focus on one task at a time
- Copy-paste code, then adapt it
- From manual, from previous exercise, from internet
- Make small changes when necessary
- Check that it works as expected
- Learn and understand as you go
- Use the Help function in R: ?hist, or select function and press F1
- Google "how to ... in R" a LOT
- E.g., "how to make histogram in R"
- Stackexchange and R-bloggers are great

WHAT IS A MODEL?

What is a model?

- A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics
- A simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions
- Clearly defined level of analysis, operationalized variables, specified relationships between variables (see: Smaldino)

What will you learn in TCSM?

- How to translate a (verbal) social scientific theory into a statistical model
- How to analyze your data with these models
- How to interpret and report your results

What will you learn in TCSM?

- How to test a specific theory with an appropriate statistical model (Confirmatory)
- How to fit the model to data and reflect back to substantive theory? (Exploratory)
- Starting point:
- Already have an appropriate (quantitative) dataset
- Focus on data analysis: modeling

Statistical Model

- Explicates our ideas about how our observed data was generated
- We have observed variables with certain characteristics
- We develop a model to explain those characteristics

Variables and Characteristics

- What is a variable?
- Anything that can vary i.e., take on different values
- Height, age, intelligence, diagnosis, happiness...
- What are possible characteristics of variables?
- By themselves (univariate): mean, variance
- How they relate to another variable (bivariate): correlation/covariance

Univariate

Bivariate

Covariance - to what degree one varies along with the other Correlation - covariance transformed (-1,1)

Statistical Models

- We observe that husband's and wife's age covary
- What kind of model could we fit to this observed data?
- We could theorize that husband's age determines wife's age
- Older men "choose" older wives
- This relationship is linear

Linear regression model

Linear regression model

$$
W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}
$$

What makes up a model?

- Models are made up of variables and parameters
- Parameters are anything in the model that we must estimate

Model Parameters

$W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}$

Model Parameters

$W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}$

Husband age (yrs)

Model Parameters

$W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}$

Model Parameters

$W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}$
Intercept Slope

Factor analysis

- Many theories in the social sciences relate to variables which cannot be directly observed
- E.g. depression, personality traits, intelligence
- Instead we try to infer things about these unobservable variables based on what we can observe
- High scores on IQ test items is taken to reflect high levels of intelligence
- We can call these types of variables latent variables or factors

History of Structural Equation Modeling

Structural Equation Modeling

- A General Framework encompassing:
- Linear models: regression, AN(C)OVA, Factor Analysis
- And any/all combinations
- Translation of theories with many components
- Mediation, Moderation
- Mainly confirmatory but allows for exploratory model search

Path Diagram: Graphical representation of SEM

See the vignette at https://cjvanlissa.github.io/tidySEM/articles/sem graph.html

Observed variable

Latent (unmeasured) variable (or factor)

Regression
(Theoretical) Causal effect * Direct Effect *

Covariance
(no causal hypothesis)
Variance when going from X to X

Regression model

Regression model

$\operatorname{Grade}_{i}=b_{1} * T_{-}$study $_{i}+e_{i}$

Multiple regression model

Path model

- Direct effects / regression coefficients
- Covariances
- Variances

Exploratory factor analysis model

- Factor loadings
- Covariances
- Variances

Confirmatory factor analysis model

- Factor loadings
- Covariances
- Variances

Structural equation model

Interpretation of parameters

- Direct effects, $b,(X \rightarrow Y)$ as regression coefficients
- If X goes up with 1 point, y is expected to go up with b points (controlling for other predictors).
- If X goes up with 1 SD, y is expected to go up with b SD (controlling for other predictors).
- Factor loadings are direct effects from a factor to an indicator
- Covariances (unstandardized) and correlations (standardized)
- Variances and residual variances

Structural Equation Models

- Some assumptions:
- Multivariate normality of (residuals of) endogenous (outcome) variables (with ML estimation)
- But there are solutions for categorical data etc (not in this course)
- Relationships are linear (unless otherwise specified)
- Independence of observations
- Exogenous (predictor) variables are measured without error
- The model is correctly specified

How do Structural Equation Models work?

- They compare an observed covariance matrix to a model-implied covariance matrix
- Can accommodate complex theories and assumptions
- Evaluate fit: Does the model account for the observed variances and covariances?
- If our theory says time studying predicts grades, but the observed covariance is zero in our observed data, we have a bad model

FIT AND COMPLEXITY

Choosing Models

- "All models are wrong but some are useful." George E.P. Box
- "the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." A. Einstein
- "For every complex question there is a simple and wrong solution." H.L Mencken

Occam's Razor

- For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives

Occam's Razor

- For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives

Occam's Razor

- For each explanation of a phenomenon, there is an extremely large number of possible and more complex alternatives
- Prefer simplest possible model for the data that still fits reasonably well
- Simple = Parsimonious

Choosing Statistical Models

Fit vs complexity

$W A_{i}=b_{0}+b_{1} H A_{i}+e_{i}$

$$
\begin{aligned}
& W A_{i} \\
& =b_{0}+b_{1} H A_{i}+b_{2} H A^{2}+b_{3} H A^{3} \\
& +b_{4} H A^{4}+\ldots .+e_{i}
\end{aligned}
$$

Fit vs Complexity

- Choosing between competing statistical models is a balance between fit and complexity
- Fit
- How well does the model describe the data
- Complexity
- How many parameters are estimated in the model? **
**Other definitions possible - this is sensible when comparing linear models, and so is the definition we will be using throughout

Defining fit

- How well does the model explain the data?
- In regression, the data are individual values on the dependent variable
- In e.g. regression, the data are observations about participants
- Fit is defined in terms of residual variance in the dependent variable
- In SEM, the data are the covariance matrix of your variables

Covariance Matrix

We can summarize relationships between $n _v a r$ variables in a n_{-}var $\times n_{-}$var variance/covariance matrix

	Hus_age	Wife_age
Hus_age	$s_{Y 1}^{2}$	
Wife_age	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$

Observed Covariance Matrix

Covariance Matrix

We can summarize relationships between $n _v a r$ variables in a n_{-}var $\times n_{-}$var variance/covariance matrix

	Hus_age	Wife_age
Hus_age	$s_{Y 1}^{2}$	
Wife_age	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$

Observed Covariance Matrix

Covariance Matrix

We can summarize relationships between $n _v a r$ variables in a n_{-}var $\times n_{-}$var variance/covariance matrix

	Hus_age	Wife_age
Hus_age	$s_{Y 1}^{2}$	
Wife_age	$\boldsymbol{S}_{\boldsymbol{Y 1} \boldsymbol{Y} \mathbf{2}}$	$s_{Y 2}^{2}$

Observed Covariance Matrix

Note: We also have information about the means of each variable. We will ignore this for now, until week 4

Regression model

	Hus_age	Wife_age
Hus_age	$s_{Y 1}^{2}$	
Wife_age	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$

Observed Covariance Matrix

Regression model

$$
\text { Wife_age }_{i}=b_{1} * \text { Hus_age }_{i}+e_{i}
$$

	Hus_age	Wife_age
Hus_age	$s_{Y 1}^{2}$	
Wife_age	$s_{Y Y Y 2}$	$s_{Y 2}^{2}$

Observed Covariance Matrix

Regression model

$$
\text { Wife_age }_{i}=b_{1} * \text { Hus_age }_{i}+e_{i}
$$

	Hus_age	Wife_age
Hus_age	$\sigma_{Y 1}^{2}$	
Wife_age	$b 1$	$\sigma_{Y 1}^{2} b_{1}+\sigma_{e}^{2}$

Model-implied Covariance Matrix

Defining complexity

The model "explains" the covariances between observed variables.

- Grades and Time-studying co-vary because Time studying has a direct effect on Grades

A good model is:

- Simple (fewest parameters)
- A good description of the data (good fit)
- More degrees of freedom == simpler model (good).

But... simpler models fit worse to the data.

Pieces of information

- The "data" in SEM are observed variances/covariances
- These are the pieces of information

	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}	$\mathbf{Y}_{\mathbf{4}}$
Y_{1}	$s_{Y 1}^{2}$			
Y_{2}	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$		
Y_{3}	$s_{Y 1 Y 3}$	$s_{Y 2 Y 3}$	$s_{Y 3}^{2}$	
Y_{4}	$s_{Y 1 Y 4}$	$s_{Y 2 Y 4}$	$s_{Y 3 Y 4}$	$s_{Y 4}^{2}$

Structural Equation Models

- We can only estimate as many parameters as there are pieces of information
- Estimate parameters to describe the covariance matrix as well as possible
- More variables: more covariances, bigger models

	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{Y}_{\mathbf{4}}$
\mathbf{Y}_{1}	$s_{Y 1}^{2}$			
$\mathbf{Y}_{\mathbf{2}}$	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$		
\mathbf{Y}_{3}	$s_{Y 1 Y 3}$	$s_{Y 2 Y 3}$	$s_{Y 3}^{2}$	
\mathbf{Y}_{4}	$s_{Y 1 Y 4}$	$s_{Y 2 Y 4}$	$s_{Y 3 Y 4}$	$s_{Y 4}^{2}$

Degrees of freedom

- We cannot estimate a model with more parameters than pieces of information
- For example, solve for a:

$$
\begin{aligned}
& 3=5-a \rightarrow a=2 \\
& b=5-a \rightarrow a=\text { ? Impossible to solve }
\end{aligned}
$$

- Our models must be identified:
- Less or equal parameters (q) than observed variances and covariances (p)

Degrees of freedom

- Our models must be identified:
- Less or equal parameters (q) than observed variances and covariances (p)
- Degrees of freedom (df) = p-q
- $\mathrm{p}=\mathrm{nvar*}(\mathrm{nvar}+1) / 2$

	Y_{1}	Y_{2}	Y_{3}	Y_{4}
Y_{1}	4.5			
Y_{2}	2.1	3.9		
Y_{3}	1.9	2.6	4.1	
Y_{4}	2.8	2.5	2.0	4.8

Model complexity in SEM

- Perfectly fitting (but very complex) model:

(Saturated model)
- Very simple (but ill fitting) model:

(Independence model)

Model complexity in SEM

- Perfectly fitting (but very complex) model:

- Very simple (but ill fitting) model:

	Y_{1}	Y_{2}	Y_{3}	$\mathrm{Y}_{\mathbf{4}}$
Y_{1}	$\sigma_{\mathrm{Y} 1}^{2}$			
Y_{2}	0	$\sigma_{\mathrm{Y} 2}^{2}$		
Y_{3}	0	0	$\sigma_{Y 3}^{2}$	
Y_{4}	0	0	0	$\sigma_{Y 4}^{2}$

A model for grades

- We observe:
- IntrMotiv
- ExtrMotiv
- Gender
- Achiev
- T_study
- Grades
- How many observed variancescovariances?

A model for grades

- We observe:
- IntrMotiv
- ExtrMotiv
- Gender
- Achiev
- T_study
- Grades

	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}	\mathbf{Y}_{4}	\mathbf{Y}_{5}	$\mathbf{Y} 6$
\mathbf{Y}_{1}	$s_{Y 1}^{2}$					
\mathbf{Y}_{2}	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$				
\mathbf{Y}_{3}	$s_{Y 1 Y 3}$	$s_{Y 2 Y 3}$	$s_{Y 3}^{2}$			
\mathbf{Y}_{4}	$s_{Y 1 Y 4}$	$s_{Y 2 Y 4}$	$s_{Y 3 Y 4}$	$s_{Y 4}^{2}$		
\mathbf{Y}_{5}	$s_{Y 1 Y 5}$	$s_{Y 2 Y 5}$	$s_{Y 3 Y 5}$	$s_{Y 4 Y 5}$	$s_{Y 5}^{2}$	
$\mathbf{Y 6}$	$s_{Y 1 Y 6}$	$s_{Y 2 Y 6}$	$s_{Y 3 Y 6}$	$s_{Y 4 Y 6}$	$s_{Y 5 Y 6}$	$s_{Y 6}^{2}$

- How many observed variancescovariances? $\quad 6 * 7 / 2=21$

Which model is simpler?

How many degrees of freedom?

3 variances, 3 residual variances
$D f=21-14=7$
3 covariances, 5 regression coefficients
\{14 parameters in total\}

Multiple regression model

5 variances, 1 residual variances
10 covariances, 5 regression coefficients \{21 parameters in total\}

Model fit

- Does the model fit the data? (Exact / approximate fit).
- Yes? Interpret parameter estimates, consider equivalent models. -> Confirmatory
- No? Re-specification -> Exploratory

Fit measure	Good	Acceptable	Bad
$\mathrm{X}^{2}{ }_{\text {df) }}$	Non-significant		Significant
RMSEA	$<.05$	$<.08$	$>.10$
CFI	$>.95$	$>.90$	

- Many other indices: SRMR, TLI, RNR, GFI, AGFA, AIC, BIC etc. http://davidakenny.net/cm/fit.htm

Model fit: reasons for caution

1. Data can look completely different but have similar covariance matrices

Model fit: reasons for caution

Anscombe's
quartet:
$\bar{x}=9.00$
$\bar{y}=7.50$

$s_{x}=3.16$
$s_{y}=1.94$
$r_{x y}=.816$

Model fit: reasons for caution

1. Data can look completely different but have similar covariance matrices
2. Path models can have very different interpretations, but equivalent fits

