Universiteit Utrecht

# Theory Construction and Statistical Modeling 

## Factor analysis

Welcome!

## Factor Analysis

- Exploratory Factor Analysis (EFA) and Principal Components Analysis (PCA)
- Two related techniques
- Both often described as types of factor analysis
- In R: use the package "psych"
- install.packages("psych"); library(psych)
- Functions: principal () and fa()
- Controversy discussed in Preacher \& McCallum
- Confirmatory Factor Analysis (CFA) next week


## EFA and PCA

- Statistical techniques in which researchers want to know, very generally:

Given a set of observed variables, how can I transform them to make a smaller set, while still retaining as much information as possible

- As much as possible, similar variables in my original set should relate to the same variable in my new set
- E.g. If I have 10,50 or 100 variables, how can I make 2 ,

3 or 4 variables that capture as much as possible

- Data-driven approaches!


## When is it useful?

1. Develop measurement tools or tests for latent variables

- Personality, Intelligence, Depression

2. Investigate the dimensions of test items
3. Data reduction

- Also called "dimension reduction"
- E.g., solves multicollinearity in linear regression


## When is it useful?

1. Develop measurement tools or tests for latent variables

- Personality, Intelligence, Depression

2. Investigate the dimensions of test items
3. Data reduction

- Also called "dimension reduction"
- E.g., solves multicollinearity in linear regression


## In Practice: Developing a measurement scale

1. Create a questionnaire with a very large number of items about a topic of interest

- Student aptitude: school history, family history, health, personality, previous grades

2. Give questionnaire to random sample
3. Derive factors

- E.g. Intelligence, Work ethic, Independence

4. Delete or add items depending on factor loadings
5. Repeat steps 2 to 4
6. Test validity of factors

- E.g. predict future grades


## Difference between PCA and EFA

- Goal:
- PCA: reduce correlated observed variables to a smaller set of independent composite variables.
- Data reduction!
- Components describe the total variance in the dataset
- (E)FA: assume or wish to test a theoretical model of latent factors causing observed variables.
- Model says that observed variables covary because all variables are caused by an unobserved factor
- Don't know exactly how many factors or which factors cause which variables Exploratory Factor Analysis (EFA)
- Strong theory on latent structure that you want to confirm/disconfirm Confirmatory Factor analysis
- PCA rotates axes to explain as much variance as possible, EFA models the covariance matrix.


## Variance and Covariance

## Sample Covariances (Girls)

|  | wordmean |  | sentence | paragrap | lozenges | cubes | visperc |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| wordmean | 68,260 |  |  |  |  |  |  |
| sentence | 28,845 |  | 25,197 |  |  |  |  |
| paragrap | 21,718 |  | 12,864 |  | 12,516 |  |  |
| lozenges | 23,947 |  | 13,228 |  | 9,056 | 61,726 |  |
| cubes | 6,840 | 4,036 |  | 3,356 | 17,416 | 20,265 |  |
| visperc | 13,037 | 12,645 | 8,335 | 26,531 | 14,931 | 47,175 |  |

PCA analyzes variance EFA analyzes covariance
or

> PCA EFA

$$
\operatorname{Cov}_{x y}=\frac{\Sigma(X-X)(Y-Y)}{N-1}
$$

Sample Correlations (Girls)

|  | wordmean | sentence | paragrap | lozenges | cubes | visperc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| wordmean | 1,000 |  |  |  |  |  |
| sentence | ,696 | 1.000 |  |  |  |  |
| paragrap | ,743 | ,724 | 1,000 |  |  |  |
| lozenges | ,369 | ,335 | ,326 | 1,000 |  |  |
| cubes | ,184 | , 179 | ,211 | ,492 | 1,000 |  |
| visperc | . 230 | , 367 | , 343 | , 492 | , 483 | 1,000 |

## Variance and Covariance



## Variance and Covariance


//7
Variance of $Y_{1}$

## Variance and Covariance



## Variance and Covariance



## Variance and Covariance



## Variance and Covariance



Total
Variance $Y_{1}$ and $Y_{2}$

## Principal Components Analysis

## Exploratory

## Factor Analysis



## PCA: Summarize variance

- For $n$ variables, you obtain $n$ components
- The first component explains most variance, second explains second-most, etc.
- Each component is uncorrelated with all others
(but see Rotation)
- Usually we retain the

//7

Variance
$Y_{1}$ and $Y_{2}$ first few components that eplain most variance: Data reduction

## PCA - Visual example

- http://setosa.io/ev/principal-componentanalysis/


## PCA



## PCA



## PCA




## EFA : Explaining covariance

- For $n$ variables, estimate max $n$ new factors
- Usually less than $n$
- I create these so that:
- The first factor explains most covariance, the second explains second-most,
- Each factor is uncorrelated with other factors ** (see Rotation)
- As much as possible each observed variable only relates to one factor


## PCA and EFA



## PCA: Analyse Variance



## EFA: Analyse Co-variance



## PCA -Example 2

1. I always wear a seatbelt
2. I do not think before I act
3. I would never make a long journey in a sailing boat
4. I am an impulsive person
5. I would like to jump out of an airplane with a parachute

## Example



- Five questions
- We observe these correlations

Example


## Example

1. 
2. 
3. 
4. 
5. 



## Example



## Example



## Example

1. I always wear a seatbelt
2. I do not think before I act
3. I would never make a long journey in a sailing boat
4. I am an impulsive person
5. I would like to jump out of an airplane with a parachute


## BOX DIAGRAMS OF PCA AND FA

## Quick Revision: Path Diagrams



Observed variable (or Indicator)

Latent (unmeasured) variable (or Factor)
$\longrightarrow$ Regression
(Theoretical) Causal effect * Direct Effect *
$\longleftrightarrow$ Covariance
(no causal hypothesis)

## Quick Revision: Interpretation of parameters

- Direct effects, $b,(X \rightarrow Y)$ as regression coefficients
- If $X$ goes up with 1 point, $y$ is expected to go up with $b$ points (controlling for other predictors).
- If $X$ goes up with 1 SD, y is expected to go up with $b$ SD (controlling for other predictors).
- Factor loadings are direct effects from a factor to an indicator
- Covariances (unstandardized) and correlations (standardized)
- Variances and residual variances


## PCA



EFA


## EFA



## EFA



## Summary PCA vs. EFA

## Principal Components Analysis (PCA) <br> Exploratory Factor Analysis (EFA)

Components Summarize Variance Factors explain Covariance
Not really a model:

- Transformation of the data
- No Model Fit

Model:

- Some variance is interesting (covariance), some is error
- Fit indices possible

Dimension Reduction
library(psych)
principal(data, nfactors = $n$ )
Extraction method: Principal
Components
Scale construction
library(psych) fa(data, nfactors = $n$ )
Extraction method: OLS, can also do "ml" (which SPSS uses)

In large samples, with large number of correlated variables, practical differences are often small

## Break



## Steps to take

- Analysis requires decisions
- 1.Extraction method
- PCA = "Principal Components"
- EFA = "OLS/Maximum Likelihood"
-2 .Number of factors
- 3.Rotation method
- 4.(Factor scores)


## Example

- Six observed variables (intelligence tests)
- visual perception, cubes, lozenges,
- paragraph, sentence, word meaning
- 2 factors
- Simulated data



## 1. Components or Factors?

principal(df, nfactors = 2)

|  | RC1 | RC2 | h2 | u2 | com |
| :--- | :--- | :--- | :--- | :--- | :--- |
| visperc | 0.81 | 0.08 | 0.66 | 0.34 | 1.0 |
| cubes | 0.77 | 0.07 | 0.59 | 0.41 | 1.0 |
| lozenges | 0.78 | 0.13 | 0.62 | 0.38 | 1.1 |
| paragrap | 0.17 | 0.79 | 0.64 | 0.36 | 1.1 |
| sentence | 0.11 | 0.78 | 0.62 | 0.38 | 1.0 |
| wordmean | 0.07 | 0.74 | 0.56 | 0.44 | 1.0 |


|  | RC1 | RC2 |
| :--- | :--- | :--- |
| SS loadings | 1.90 | 1.80 |
| Proportion Var | 0.32 | 0.30 |
| Cumulative Var | 0.32 | 0.62 |
| Proportion Explained | 0.51 | 0.49 |
| Cumulative Proportion | 0.51 | 1.00 |

## 1. Components or Factors?

fa(df, nfactors = 2)

|  | MR1 | MR2 | h2 | u2 | com |
| :--- | :--- | ---: | :--- | :--- | :--- |
| visperc | 0.74 | -0.03 | 0.53 | 0.47 | 1 |
| cubes | 0.60 | 0.01 | 0.36 | 0.64 | 1 |
| lozenges | 0.65 | 0.04 | 0.44 | 0.56 | 1 |
| paragrap | 0.01 | 0.72 | 0.52 | 0.48 | 1 |
| sentence | 0.01 | 0.65 | 0.42 | 0.58 | 1 |
| wordmean | 0.00 | 0.55 | 0.31 | 0.69 | 1 |

MR1 MR2

| SS loadings | 1.33 | 1.25 |
| :--- | :--- | :--- |
| Proportion Var | 0.22 | 0.21 |
| Cumulative Var | 0.22 | 0.43 |
| Proportion Explained | 0.52 | 0.48 |
| Cumulative Proportion | 0.52 | 1.00 |

With factor correlations of MR1 MR2
MR1 1.00 0.38
MR2 0.381 .00

## 2. EFA: How Many Factors?

- If (proto) theory predicts $k$ factors, try $k$ factors
- Parallel analysis
- Guttman-Kaiser criterion (Eigenvalue $\geq 1$ ) best with small number of reliable variables
- Scree plot best with large number of unreliable variables
- Pick the solution that makes most interpretative sense


## 2. EFA: How Many Factors?

- Guttman-Kaiser criterion (Eigenvalue $\geq 1$ ) best with small number of reliable variables
- Eigenvalues relate to how much of the total variance each component/factor accounts for
- First explains most, second explains second-most, etc.
- $\frac{\text { Eigenvalue }}{\text { Total Number observed items }}=$ Variance explained by factor
> res <- principal (df, nfactors = 5)
> res\$values
[1] 2.34 1.35 0.67 0.60 0.53 0.48
> res\$values > 1
[1] TRUE TRUE FALSE FALSE FALSE FALSE


## 2. EFA: How Many Factors?

- Scree plot best with large number of unreliable variables
- Pick the number of factors "above the elbow"
> plot(1:6, res\$values, type = "b")



## 2. EFA: How Many Factors?

- Scree plot best with large number of unreliable variables
- Pick the number of factors "above the elbow"
> plot(1:6, res\$values, type = "b")



## 2. EFA: How Many Factors?

- Parallel Analysis (Horn, 1965)
> fa.paralle1 (df)
Parallel analysis suggests that the number of factors $=2$ and the number of components $=2$

Parallel Analysis Scree Plots


## 2. EFA: How Many Factors?

- Pick the solution that makes most sense wrt interpretation
- If theory predicts $k$ factors, try $k$ factors
- Try out different numbers of factor solutions
- Sometimes different rules-of-thumb give different solutions
- Look at the factor loadings
- Pick the solution which gives you meaningful factors/components


## 3. Factor Rotation

## Orthogonal rotation:

Factors rotate, but 'angle' is always 90 degrees. Factors are not correlated!

Oblique rotation: factors rotate to minimize distance between items and factor (oblique)

Factors are correlated!


Reading question 5: what is the purpose of factor rotation?

The procedure of rotating the factor axes makes sure items load as much on only one factor as possible. There are two methods: Orthogonal rotation, in which two latent factors are not allowed to correlate (i.e. the axes describe a 90 degree angle), and oblique (oblimin or promax) rotation, in which the factors are allowed to correlate.

## Orthogonal Rotation 1



## Orthogonal Rotation 2



## Oblique Rotation 1



## Oblique rotation 2



## 3. Factor rotation

- Orthogonal: uncorrelated factors
- Varimax
- Simple
- Interpretation may be easier
- Factor loadings show up in the Factor Matrix
- Oblique: correlated factors
- Promax, Oblimin
- More realistic
- Easier to get items to load on only one factor
- Factor loadings show up in the Pattern Matrix


## Varimax vs promax

Rotated Factor Matrix

|  | Factor |  |
| :--- | :---: | :---: |
|  | 1 | 2 |
| item1 | .097 | .700 |
| item2 | .097 | .700 |
| item3 | .097 | .700 |
| item4 | .700 | .097 |
| item5 | .700 | .097 |
| item6 | .700 | .097 |

Extraction Method: Maximum Likelihood. Rotation Method: Varimax with Kaiser Noi
a. Rotation converged in 3 iterations.

Pattern Matrix ${ }^{\text {a }}$

|  | Factor |  |
| :--- | :---: | :---: |
|  | 1 | 2 |
| item1 | .000 | .707 |
| item2 | .000 | .707 |
| item3 | .000 | .707 |
| item4 | .707 | .000 |
| item5 | .707 | .000 |
| item6 | .707 | .000 |

Extraction Method: Maximum Likelihood. Rotation Method: Promax with Kaiser No
a. Rotation converged in 3 iterations.

## 4. Factor scores

- Useful to save the factor scores:

$$
\begin{aligned}
& \text { fa(df, nfactors = 2, } \\
& \text { scores = "regression") }
\end{aligned}
$$

- Multiplication of item scores:
sum(individual itemscore * factor loading)
Three ways: "regression", "Anderson" or "Bartlett"
- Small difference
- Use these factors as observed variables in your analysis
- Ignores measurement error
- Not needed if you continue with SEM!


## 4. Factor scores

> res <- fa(df, nfactors = 2, scores = "Bartlett")
> head(res\$scores)
MR1 MR2
[1,] -0.5609899 -0.03047855
[2,] 0.51326441 .29435355
[3,] $0.2444246-1.19983489$
[4,] -0.8724184 1.30067344
[5,] -0.1687548 1.02015701
[6,] $1.1181263-0.51572749$

## EFA: Optimal decisions and defaults

| Decision about | Optimal | Default |
| :---: | :---: | :---: |
| Extraction | Theory: <br> - Factors <br> Data reduction: <br> - Components | fa(): <br> - Factors <br> principal(): <br> - Components |
| \# Factors | Theory <br> Parallel analysis |  |
| Rotation | Oblique | fa(): <br> - oblimin principal(): <br> - Varimax |
| Factor scores | Bartlett | fa(): <br> - scores = "regression" principal(): <br> - method = "regression" |

## Example EFA

## - Allen \& Mayers (1996) three part model of commitment

- Affective commitment
- 5 items

I would be very happy to spend the rest of my career with this organization.
I really feel as if this organization's problems are my own.

- Continuance commitment ${ }^{\text {Too much of my life would be disrupted if I }}$ - 5 items I feel that I have too few options to consider leaving this organization.
- Normative commitment I would feel guilty if I left my organization now.
- 4 items

This organization deserves my loyalty.

## Example

Think about (and report)

- Extraction method
- Number of factors
- Rotation method


## Number of factors

```
> res <- fa(df, nfactors = 6)
```

> res
Factor Analysis using method $=$ minres
Ca11: $\mathrm{fa}(\mathrm{r}=\mathrm{df}$, nfactors = 6)
Standardized loadings (pattern matrix) based upon correlation matrix

|  | MR1 | MR2 | MR5 | MR4 | MR3 | MR6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| SS loadings | 2.87 | 1.64 | 1.37 | 1.26 | 1.28 | 0.65 |
| Proportion Var | 0.20 | 0.12 | 0.10 | 0.09 | 0.09 | 0.05 |
| Cumulative Var | 0.20 | 0.32 | 0.42 | 0.51 | 0.60 | 0.65 |
| Proportion Explained | 0.32 | 0.18 | 0.15 | 0.14 | 0.14 | 0.07 |
| Cumulative Proportion | 0.32 | 0.50 | 0.65 | 0.79 | 0.93 | 1.00 |

> res\$values

| [1] | 4.21663707 | 2.23703890 | 1.23475959 | 0.49065841 | 0.44348134 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0.44266071 | 0.11342196 | 0.05770514 | 0.03241050 |  |
| $[10]$ | 0.01736304 | -0.01664042 | -0.03138805 | -0.06975776 | -0.10589982 |

## Number of factors

> fa.paralle1 (df) Paralle1 analysis suggests that the number of factors $=3$ and the number of components $=3$

Parallel Analysis Scree Plots


## Rotated factor loadings

```
> res <- fa(df, nfactors = 3)
> res
Factor Analysis using method = minres
Ca11: fa(r = df, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
            MR1 MR3 MR2 h2 u2 com
A1 0.51 0.19 0.03 0.36 0.64 1.3
A2 0.77 0.06 -0.21 0.67 0.33 1.2
A3 0.86 -0.01 0.01 0.73 0.27 1.0
A4 0.72 0.11 -0.08 0.59 0.41 1.1
A5 0.85 -0.09 0.17 0.69 0.31 1.1
C1 0.06 0.31 0.60 0.56 0.44 1.5
C2 0.08
C3 -0.17 -0.06 0.72 0.54 0.46 1.1
C4 0.19 -0.02 0.32 0.13 0.87 1.7
C5 0.08 -0.04 0.65 0.42 0.58 1.0
N1 0.16
N2 0.09 0.67 0.00 0.50}00.501.
N3 -0.12 0.90
N4 0.08
With factor correlations of
        MR1 MR3 MR2
MR1 1.00 0.34 -0.03
MR3 0.34 1.00 0.25
MR2 -0.03 0.25 1.00
```


## Typical step-by-step procedure for assessing quality of measurement?

- 1. check data -> outliers, missing data etc.
- 2. check correlations
- 3. More than 1 factor/component?
- 4. include only those items that form a scale
- 5. compute reliability (Cronbach's alpha) of indicators for every factor using psych: : alpha()


## Additional Reading

- Andy Field is a useful reference
- DO NOT use Edition 3 or earlier
- Mixes up PCA and EFA
- See instead Edition 4 onwards

Universiteit Utrecht

## See you Thursday!



