Universiteit Utrecht

Theory Construction and Statistical Modeling

Welcome!

Today

- Intro to Confirmatory Factor Analysis
- EFA vs CFA
- Giving Latent Variables a scale
- Model Fit 1
- Complexity and Degrees of Freedom
- The Chi-Square Test $\chi 2$
- Model Fit 2
- Alternative Fit Measures
- Extensions
- Second order factors
- Means and intercepts

Confirmatory factor analysis

- EFA vs CFA

Exploratory factor analysis	Confirmatory factor analysis
Theory development Inductive	Theory testing Deductive \# factors a priori Theory-driven
Dactors a posteriori Data-driven	Not all variables load on all factors (usually only one)
All variables load on all factors	No rotation needed
Rotation needed for interpretation	SEM-programs (lavaan)
SPSS / R psych	

Exploratory factor model

Exploratory factor model

Confirmatory factor model

Confirmatory factor model

Scaling

- What scale does your unmeasured latent variable have?
- Height in cm has a scale,
- Happiness from 1-7 has a scale
- But what is the scale of something you did not measure?
- Two choices:
- Fix the factor variance at 1 (+1 SD on latent variable associated with +1*factor loading on observed variable)
- Fix one factor loading at 1

Scale of latent variable is linked to scale of that observed variable

Scaling

Each factor needs to be assigned a scale:
For example by fixing the variance at 1.

Number of parameters in model: 11 5 variances 5 regression coefficients 1 covariance

Scaling

Or by fixing 1 factor loading per factor at 1

Number of parameters in model: 11 7 variances 3 regression coefficients
1 covariance

Default in lavaan

Technical Intermezzo

- CFA model must be identified to be fit, by having $\mathbf{d f} \geq \mathbf{0}$
$-d f=$ number of observed variances and covariances number of parameters in model
- Df = number of known pieces of information - number of estimated pieces of information
- Latent variables must be given a
 scale by fixing certain parameter
- Remember example:
$a=5-2$ is identified
$a=5-b$ is not identified

Technical Intermezzo

- EFA is identified by other restrictions
- Factor variances fixed to 1
- Factor covariances fixed to o
- Functions of multiple loadings fixed to a constant

Model complexity

The model explains the covariances between observed variables. A good model is:

- Simple
- A good description of reality
- The larger the degrees of freedom, the more simple the model (good). But... the worse the model will fit to the data.

Model complexity

- Perfectly fitting (but very complex) model:

(Saturated model)
- Very simple (but ill fitting) model:

(Independence model)

Degrees of freedom

- Keep track of the balance between known and estimated quantities
- Degrees of freedom (df) = p-q
- p : Observed pieces of information
- q: Unknown pieces of information
- An identified model has
fewer parameters (q) than observed variances and covariances (p)

Observations

- Input for SEM is a variance/covariance (vcov) matrix
- Number of observations is the number of unique elements in the vcov matrix
- Lower triangular formula:
$\mathrm{p}=$ nvar*(nvar+1)/2

	Y_{1}	Y_{2}	Y_{3}	Y_{4}
Y_{1}	4.5			
Y_{2}	2.1	3.9		
Y_{3}	1.9	2.6	4.1	
Y_{4}	2.8	2.5	2.0	4.8

Parameters

These are parameters in a SEM:

- Variances of exogenous (predictor) variables
- Covariances among exogenous (predictor) variables
- Regression (or covariance) between exogenous (predictor) and endogenous (outcome) variables
- Residual variances
- Covariances between residual variances
$5^{*} 6 / 2=15$
var = 2 ($\mathrm{y} 1, \mathrm{y} 2$)
res.var = 3
$\operatorname{cov}=2$
reg $=4$
$D F=15-11$
$=4$

$4 * 5 / 2=10$
$1+3+1+5=10$

DF?

$10-10=0$

Model fit

How well does the theoretical model fit the data

Model implies a covariance structure: covariance between X and Z is lower than other 2
Model fit: How close is the model-implied vcov matrix to the observed vcov matrix?

Maximum likelihood estimation

- k : Number of observed variables
- S: Sample covariance matrix
- Σ : Model-implied covariance matrix

The objective function is given by:

- $\mathrm{F}_{\mathrm{ML}}=\log |\boldsymbol{\Sigma}|-\log |\mathbf{S}|+\operatorname{trace}\left(\mathbf{S} \boldsymbol{\Sigma}^{-1}\right)-k$

And the model Chi square:

- $\chi^{2}=(N-1) F_{M L}$

And the df are p-q

Chi-square measure of fit

- $\chi^{2}=(N-1) F_{M L}$
- Asymptotically chi-square with $\mathrm{df}=\mathrm{p}-\mathrm{q}$
- Null hypothesis: $\boldsymbol{\Sigma}_{\text {population }}=\boldsymbol{\Sigma}_{\text {model }}$
- Alternative hypothesis: $\boldsymbol{\Sigma}_{\text {population }} \neq \boldsymbol{\Sigma}_{\text {model }}$
- We take \boldsymbol{S} to be an estimator of $\boldsymbol{\Sigma}_{\text {population }}$
- Rejecting the null hypothesis ($\mathrm{p}<.05$) means our model fits the data badly
- Failing to reject the null hypothesis ($\mathrm{p}>.05$) means the model fits the data well

Chi-square measure of fit

- $\chi^{2}=(N-1) F_{M L}$
- Asymptotically chi-square with $\mathrm{df}=\mathrm{p}-\mathrm{q}$
- Null hypothesis: $\Sigma_{\text {population }}=\Sigma_{\text {model }}$
- Alternative hypothesis: $\boldsymbol{\Sigma}_{\text {population }} \neq \boldsymbol{\Sigma}_{\text {model }}$
- Does our model fit the data significantly worse than the saturated model?

Example 1

\boldsymbol{S} : Observed Covariance Matrix

Example 1

$$
\operatorname{Grade}_{i}=b_{1} T_{\text {study }_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right)
$$

	T_study	Grade
T_study	$s_{Y 1}^{2}$	
Grade	$s_{Y 1 Y 2}$	$s_{Y 2}^{2}$

\boldsymbol{S} : Observed Covariance Matrix

Example 1

$$
\operatorname{Grade}_{i}=b_{1} T_{\text {study }_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right)
$$

	T_study	Grade
T_study	$s_{Y 1}^{2}$	
Grade	$S_{Y 1 Y 2}$	$s_{Y 2}^{2}$

S: Observed Covariance Matrix

	T_study	Grade
T_study	$\sigma_{Y 1}^{2}$	
Grade	b_{1}	$b_{1}^{2} \sigma_{Y 1}^{2}+\sigma_{e}^{2}$

$\boldsymbol{\Sigma}$: Modelled Covariance Matrix

Example 1

$$
\operatorname{Grade}_{i}=b_{1} T_{s t u d y_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right)
$$

	T_study	Grade
T_study	1	
Grade	.3	1.5

S: Observed Covariance Matrix

	T_study	Grade
T_study	$\sigma_{Y 1}^{2}$	
Grade	b_{1}	$b_{1}^{2} \sigma_{Y 1}^{2}+\sigma_{e}^{2}$

$\boldsymbol{\Sigma}$: Modelled Covariance Matrix

Example 1

$\operatorname{Grade}_{i}=b_{1} T_{\text {study }_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right)$

	T_study	Grade
T_study	1	
Grade	.3	1.5

S: Observed Covariance Matrix

	T_study	Grade
T_study	$\sigma_{Y 1}^{2}$	
Grade	b_{1}	$b_{1}^{2} \sigma_{Y 1}^{2}+\sigma_{e}^{2}$

$\boldsymbol{\Sigma}$: Modelled Covariance Matrix

Example 1

$$
\operatorname{Grade}_{i}=b_{1} T_{\text {study }_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right)
$$

	T_study	Grade
T_study	1	
Grade	.3	1.5

S: Observed Covariance Matrix

	T_study	Grade
T_study	1	
Grade	.3	$.09+1.41$

$\boldsymbol{\Sigma}$: Modelled Covariance Matrix

Example 1

$$
\begin{aligned}
& \overbrace{\text { T_study }}^{b_{1}} \rightarrow \text { Grade }:^{b_{Y 1}^{2}} \quad \begin{array}{l}
\sigma_{e}^{2} \\
\sigma_{Y 1}^{2}=1 \\
b_{1}=.3 \\
\sigma_{e}^{2}=1.41
\end{array} \\
& \operatorname{Grade}_{i}=b_{1} T_{\text {study }_{i}}+e_{i} \quad e_{i} \sim N\left(0, \sigma_{e}^{2}\right) \\
& \text { S: Observed Covariance Matrix } \\
& \boldsymbol{\Sigma} \text { : Modelled Covariance Matrix } \\
& \text { Perfect fit, so } 0 \text { degrees of freedom! }
\end{aligned}
$$

Example 2

Example 2

Example 2

nvar $=4 \quad p=n \operatorname{var}(n v a r+1) / 2=10 \quad q=9 \quad d f=p-q=1$

Example 2

Sample covariance matrix:

$$
\mathrm{S}_{\mathrm{N}}=\mathrm{I}_{\mathrm{I}_{2}}^{\mathrm{I}_{1}}{ }_{\mathrm{I}_{4}}^{\mathrm{I}_{1}}\left[\begin{array}{cccc}
\mathrm{I}_{2} & \mathrm{I}_{3} & \mathrm{I}_{4} \\
3.474 & 2.826 & 0.984 & 0.741 \\
2.826 & 3.745 & 0.971 & 0.817 \\
0.984 & 0.971 & 3.136 & 2.199 \\
0.741 & 0.817 & 2.199 & 2.005
\end{array}\right] \quad \mathrm{N}=543
$$

Example 2

Model implied covariance matrix:
Algorithm ('tracing rules') based on path model which can be used to obtain expression for Σ :
http://ibgwww.colorado.edu/twins2002/cdrom/HTML/BOOK/node78.htm

$$
\Sigma_{\text {model }} \begin{aligned}
& I_{1} \\
& I_{3} \\
& I_{2} \\
& I_{4}
\end{aligned}\left[\begin{array}{cccc}
I_{1} & I_{2} & I_{3} & I_{4} \\
\beta_{1} \beta_{1}+\sigma_{e 1}^{2} & \beta_{1} \beta_{2} & \beta_{1} \beta_{3} \rho & \beta_{1} \beta_{4} \rho \\
\beta_{2} \beta_{1} & \beta_{2} \beta_{2}+\sigma_{e 2}^{2} & \beta_{2} \beta_{3} \rho & \beta_{2} \beta_{4} \rho \\
\beta_{3} \beta_{1} \rho & \beta_{3} \beta_{2} \rho & \beta_{3} \beta_{3}+\sigma_{e 3}^{2} & \beta_{3} \beta_{4} \\
\beta_{4} \beta_{1} \rho & \beta_{4} \beta_{2} \rho & \beta_{4} \beta_{3} & \beta_{4} \beta_{4}+\sigma^{2}{ }_{e 4}
\end{array}\right]
$$

Example 2

$$
\begin{aligned}
& \Sigma_{\text {model }}=I_{I_{2}}\left[\begin{array}{llll}
I_{3} \\
I_{4}
\end{array} \beta_{4} \beta_{1}+\sigma_{e 1}^{2}\right. \\
& \beta_{2} \beta_{1} \\
& \beta_{3} \beta_{1} \rho \\
& \beta_{4} \beta_{1} \rho
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \sum_{\text {model }}={ }_{I_{2}}^{I_{2}}\left[\begin{array}{lll}
I_{1} \\
\beta_{1} \beta_{1}+\sigma_{e 1}^{2} \\
\beta_{3} \beta_{1} \rho & \beta_{2} \beta_{2}+\sigma_{e 2}^{2} \\
\beta_{4} \beta_{1} \rho & \beta_{3} \beta_{2} \rho & \beta_{3} \beta_{3}+\sigma_{e 3}^{2} \\
\beta_{4} \beta_{2} \rho & \beta_{4} \beta_{3} & \beta_{4} \beta_{4}+\sigma_{e 4}^{2}
\end{array}\right]
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \Sigma_{\text {model }}=I_{I_{2}}^{I_{2}}\left[\begin{array}{lll}
I_{1} \\
I_{1} \beta_{1}+\sigma_{e 1}^{2} \\
\beta_{2} \beta_{1} & \beta_{2} \beta_{2}+\sigma_{e 2}^{2} \\
\beta_{3} \beta_{1} \rho & \beta_{3} \beta_{2} \rho & \beta_{3} \beta_{3}+\sigma_{e 3}^{2} \\
\beta_{4} \beta_{1} \rho & \beta_{4} \beta_{2} \rho & \beta_{4} \beta_{3} \\
\beta_{4} \beta_{4}+\sigma_{e 4}^{2}
\end{array}\right]
\end{aligned}
$$

Example

Sample and model implied covariance matrices:

$$
\begin{aligned}
& \mathbf{S}_{\mathrm{N}}=\left[\begin{array}{lllll}
3.474 & & & \\
2.826 & 3.745 & & \\
0.984 & 0.969 & 3.130 & & \mathrm{~N}=543 \\
0.740 & 0.815 & 2.195 & 2.001
\end{array}\right] \\
& \hat{\Sigma}_{\text {model }}=\left[\begin{array}{llll}
3.474 & & & X^{2}=5.281 \\
2.826 & 3.745 & & \mathrm{df}=1 \\
0.957 & 0.995 & 3.130 \\
0.762 & 0.792 & 2.195 & 2.001
\end{array}\right] \quad \mathrm{p}=0.022
\end{aligned}
$$

Break

Today

- Intro to Confirmatory Factor Analysis
- EFA vs CFA
- Giving Latent Variables a scale
- Model Fit 1
- Complexity and Degrees of Freedom
- The Chi-Square Test $\chi 2$
- Model Fit 2
- Alternative Fit Measures
- Extensions
- Second order factors
- Means and intercepts

Problem with chi-square

- Large $N \rightarrow$ high power to detect small discrepancies \rightarrow "always" significant
- Small $N \rightarrow$ low power to detect large discrepancies \rightarrow "usually" not significant

Always report the chi-square, df and p , but consider other fit indices as well

Approximate fit

- Root mean squared error of approximation
\square RMSEA $=\sqrt{ } \frac{\chi 2-d f}{d f(N-1)} \quad$ Steiger $\&$ Lindt (1980)
- RMSEA < . 05 close fit
- RMSEA < . 08 satisfactory fit
- RMSEA > . 10 bad fit

Unreliable with small N and small df

Incremental fit

Comparative fit index (CFI)

- Chi-square comparison to baseline model
- $0 \leq \mathrm{CFI} \leq 1$
- Rules of thumb: <.go bad fit, >.95 good fit
- Too low when the correlations between observed variables are low

Model fit from lavaan

```
> summary(fit_trust_model_3f, fit.measures = TRUE)
lavaan 0.6-6 ended normally after 45 iterations
```

Estimator
Optimization method
Number of free parameters

Number of observations

Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)
Model Test Baseline Model:
Test statistic
Degrees of freedom
P-value
9188.922

51
0.000
75675.049

66
0.000

Chi square of your model

Chi square of a rudimentary default model

What is this baseline model?

Independence model:
Only variances, all covariances fixed @0

Model fit from lavaan

```
User Model versus Baseline Model:
    Comparative Fit Index (CFI)
<- This emphasizes that we are looking at relative fit indices, comparing two models
                                    0.879
    Tucker-Lewis Index (TLI)
                                    0.844
```

```
Loglikelihood and Information Criteria:
```

```
Loglikelihood and Information Criteria:
```

Loglikelihood user model (HO)
-357923.209
Loglikelihood unrestricted model (H1)
Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC) 716021.036

```
    RMSEA 0.108
    90 Percent confidence interval - lower 0.106
    90 Percent confidence interval - upper 0.110
    P-value RMSEA <= 0.05 0.000
Standardized Root Mean Square Residual:
    SRMR
    0.058
```


What if the model doesn't fit?

- Do not interpret the parameter estimates
- Revisit theory
- Or modify model

Factor model with cross loading and residual correlation

Example

Example

$$
\begin{aligned}
& \chi^{2}(43)=63.50, \mathrm{p}=.023 \\
& \text { RMSEA }=.017 \\
& \text { CFI }=.98
\end{aligned}
$$

Example

Fig. 1 Mathematical ability measured by worded problems. Notes: All figures denote standardized parameter estimates; apostrophes indicate non-significance; $N=1617$; model fit: $\chi^{2}=103.79, d f=58$, $p<0.01$, RMSEA $=0.022$ [90% CI: $0.015,0.029], \mathrm{ECVI}=0.122$ [90% CI: $0.108,0.143]$

Looking ahead: hybrid models

- After CFA, possible to extend the model
- Include outcome measures
- Combination of factor analysis and regression
- advantage?

Advantages?

- One-go versus step-by-step
- Correct for measurement error
-Test entire model

Second order CFA

${ }^{\circ}$ LUL $=$ union loyalty, $R T U=$ responsibility to the union, WWU $=$ wiflingness to work for the unton, $\mathrm{BU}=\mathrm{belief}$ in unionism, $\mathrm{CC}=$ company commitment and $\mathrm{JTL}=$ intent to leave.

Second order CFA

In what circumstances can a second order CFA be useful?

When there are multiple factors which can be explained by some common theoretical latent construct (e.g. IQ tests)

- Ideally more than 2 correlated factors, for model identification

Critical thoughts

Theory should come first

Second order CFA is more complex model, so fit will be better

Bad fit means that your model does not describe reality well Good fit does not mean that a second order factor exists "in reality"

Instead of a second order CFA, you could just allow the factors to correlate

A researcher has developed a new questionnaire that should measure someone depression and wants to know how many factors there are. Which technique would you use?
A. PCA
B. EFA
C. CFA

CFA vs EFA vs PCA

- PCA - summary of variance of items
- EFA - given the data, how many factors are there?
- CFA - is my theoretical model supported by my data?

Learning check

TRUE or FALSE?

Generally, more factor loadings are estimated in a EFA model than in a CFA model

Exploratory factor model

Confirmatory factor model

Learning check

TRUE or FALSE:

PCA and EFA both assume that indicator variables do not have measurement error

PCA

Means and Intercepts

- We have modeled only variances and covariances

We have ignored:

1. Means
2. Intercepts

- Every observed variable has a mean
- We can estimate intercepts and latent means
- This will be covered in more detail in the coming weeks - GLM, multi-group models

Means and Intercepts

- In SEM, you can choose to estimate means and intercepts or not
- If you have missing data, you have to estimate means and intercepts
- Doing this will result in a different number of estimated parameters
- But it will not change the degrees of freedom
- We add z observed means, and estimate z means or intercepts

