
Theory Construction and 
Statistical Modeling  

Welcome!



Today

• Intro to Confirmatory Factor Analysis
– EFA vs CFA

– Giving Latent Variables a scale

• Model Fit 1
– Complexity and Degrees of Freedom

– The Chi-Square Test χ2

• Model Fit 2
– Alternative Fit Measures

• Extensions
– Second order factors

– Means and intercepts



Confirmatory factor analysis

• EFA vs CFA
Exploratory factor analysis Confirmatory factor analysis

Theory development
Inductive

Theory testing
Deductive

# factors a posteriori
Data-driven

# factors a priori
Theory-driven

All variables load on all factors Not all variables load on all factors 
(usually only one)

Rotation needed for interpretation No rotation needed

SPSS / R psych SEM-programs (lavaan)



Exploratory factor model

withdrawn somatisation anxiety delinquency aggression



Exploratory factor model

withdrawn somatisation anxiety delinquency aggression



Confirmatory factor model

withdrawn somatisation anxiety delinquency aggression

Internalizing Externalizing



withdrawn somatisation anxiety delinquency aggression

Internalizing Externalizing

ew es ea ed ea

1 1 1 1 1

Confirmatory factor model

factor correlation

factor loading

factor variance

Residual variance



Scaling
• What scale does your unmeasured latent variable 

have? 
– Height in cm has a scale,
– Happiness from 1-7 has a scale

• But what is the scale of something you did not 
measure?

• Two choices:
– Fix the factor variance at 1 

(+1 SD on latent variable associated with +1*factor 
loading on observed variable)

– Fix one factor loading at 1
Scale of latent variable is linked to scale of that observed 
variable



withdrawn somatisation anxiety delinquency aggression

Internalizing Externalizing

ew es ea ed ea

1
1

1 1 1 1 1

Each factor needs 
to be assigned a 
scale:
For example by 
fixing the variance 
at 1.

Number of 
parameters in 
model: 11
5 variances
5 regression 
coefficients
1 covariance

Scaling



withdrawn somatisation anxiety delinquency aggression

Internalizing Externalizing

ew es ea ed ea

1 1

Or by fixing 1 
factor loading per 
factor at 1

Number of 
parameters in 
model: 11
7 variances
3 regression 
coefficients
1 covariance

1 1 1 1 1

Default in 
lavaan

Scaling



Technical Intermezzo

• CFA model must be identified
to be fit, by having 𝐝𝐟 ≥ 𝟎
– df = number of observed

variances and covariances –
number of parameters in model

– Df = number of known pieces of 
information – number of 
estimated pieces of information 

– Latent variables must be given a 
scale by fixing certain
parameter

– Remember example:
a = 5 – 2 is identified
a = 5 – b is not identified



Technical Intermezzo

• EFA is identified by other
restrictions

– Factor variances fixed to 1

– Factor covariances fixed to 0

– Functions of multiple 
loadings fixed to a constant



The model explains the covariances between 
observed variables. A good model is:

– Simple

– A good description of reality

• The larger the degrees of freedom, the more 
simple the model (good). But… the worse the 
model will fit to the data.

Model complexity



• Perfectly fitting (but very complex) model:

Model complexity

Y3 Y4Y1 Y2

• Very simple (but ill fitting) model:

Y3 Y4Y1 Y2

(Saturated 

model)

(Independence 

model)



Degrees of freedom

• Keep track of the balance between
known and estimated quantities

• Degrees of freedom (df) = p – q

• p: Observed pieces of information

• q: Unknown pieces of information

• An identified model has 
fewer parameters (q) than
observed variances and covariances (p)



Observations

• Input for SEM is a variance/covariance (vcov) 
matrix

• Number of observations is the number of 
unique elements in the vcov matrix

• Lower triangular formula:
p  = nvar*(nvar+1) / 2

Y1 Y2 Y3 Y4

Y1 4.5

Y2 2.1 3.9

Y3 1.9 2.6 4.1

Y4 2.8 2.5 2.0 4.8



Parameters

These are parameters in a SEM:

• Variances of exogenous (predictor) variables

• Covariances among exogenous (predictor) 
variables

• Regression (or covariance) between 
exogenous (predictor) and endogenous 
(outcome) variables

• Residual variances

• Covariances between residual variances



y1

y2 y4

y5

y3

DF?
5*6 /2 = 15

var = 2 (y1, y2)

res.var = 3

cov = 2

reg = 4

DF = 15 – 11 

= 4



DF?
4*5 /2 =10

1+ 3+ 1+ 5 = 10

10-10 = 0



Model fit

How well does the theoretical model fit the data

Model implies a covariance structure: covariance 
between X and Z is lower than other 2

Model fit: How close is the model-implied vcov
matrix to the observed vcov matrix?

X Y Z



Maximum likelihood estimation

• k: Number of observed variables

• S: Sample covariance matrix

• Σ: Model-implied covariance matrix

The objective function is given by:

• FML = log|Σ| - log|S| + trace(SΣ-1) – k

And the model Chi square:

• χ2 = (N-1) FML

And the df are p - q



Chi-square measure of fit

• χ2 = (N-1) FML

• Asymptotically chi-square with df = p – q

• Null hypothesis: Σpopulation =Σmodel

• Alternative hypothesis: Σpopulation ≠Σmodel

• We take S to be an estimator of Σpopulation

– Rejecting the null hypothesis (p<.05) means our model fits 
the data badly

– Failing to reject the null hypothesis (p>.05) means the
model fits the data well



Chi-square measure of fit

• χ2 = (N-1) FML

• Asymptotically chi-square with df = p – q

• Null hypothesis: Σpopulation =Σmodel

• Alternative hypothesis: Σpopulation ≠Σmodel

• Does our model fit the data significantly
worse than the saturated model?
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Example 1

T_study Grade e
1

T_study Grade

T_study 𝑠𝑌1
2

Grade 𝑠𝑌1𝑌2 𝑠𝑌2
2

𝑺: Observed Covariance Matrix



25

Example 1

T_study Grade e
1

T_study Grade

T_study 𝑠𝑌1
2

Grade 𝑠𝑌1𝑌2 𝑠𝑌2
2

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝑺: Observed Covariance Matrix
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Example 1

T_study Grade e
1

T_study Grade

T_study 𝑠𝑌1
2

Grade 𝑠𝑌1𝑌2 𝑠𝑌2
2

T_study Grade

T_study 𝜎𝑌1
2

Grade 𝑏1 𝑏1
2𝜎𝑌1

2 + 𝜎𝑒
2

𝚺: Modelled Covariance Matrix

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝐒: Observed Covariance Matrix

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖
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Example 1

T_study Grade e
1

T_study Grade

T_study 1

Grade .3 1.5

T_study Grade

T_study 𝜎𝑌1
2

Grade 𝑏1 𝑏1
2𝜎𝑌1

2 + 𝜎𝑒
2

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝐒: Observed Covariance Matrix 𝚺: Modelled Covariance Matrix

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖
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Example 1

T_study Grade e
1

T_study Grade

T_study 1

Grade .3 1.5

T_study Grade

T_study 𝜎𝑌1
2

Grade 𝑏1 𝑏1
2𝜎𝑌1

2 + 𝜎𝑒
2

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝜎𝑌1
2 = 1

𝑏1 = .3
𝜎𝑒
2 = 1.41

𝐒: Observed Covariance Matrix 𝚺: Modelled Covariance Matrix

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖
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Example 1

T_study Grade ε
1

T_study Grade

T_study 1

Grade .3 1.5

T_study Grade

T_study 1

Grade .3 .09 + 1.41

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝜎𝑌1
2 = 1

𝑏1 = .3
𝜎𝑒
2 = 1.41

𝐒: Observed Covariance Matrix 𝚺: Modelled Covariance Matrix

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖
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Example 1

T_study Grade e
1

T_study Grade

T_study 1

Grade .3 1.5

T_study Grade

T_study 1

Grade .3 .09 + 1.41

𝜎𝑌1
2

𝑏1

𝜎𝑒
2

𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)

𝜎𝑌1
2 = 1

𝑏1 = .3
𝜎𝑒
2 = 1.41

Perfect fit, so 0 degrees of freedom! 

𝐒: Observed Covariance Matrix 𝚺: Modelled Covariance Matrix

𝐺𝑟𝑎𝑑𝑒𝑖 = 𝑏1𝑇𝑠𝑡𝑢𝑑𝑦𝑖 + 𝑒𝑖



Example 2

I3

I2

I1

F1

e1

e2

e3

I4

F2

e4



Example 2

I3

I2

I1

F1

e1

e2

e3

I4

F2

e4

1

1

1

1

1

1



Example 2

I3

I2

I1

F1

e1

e2

e3

I4

F2

e4

1

1

1

1

1

1

1

3

2

4

2𝑒1

2𝑒4

2𝑒3

2𝑒2



q = 9p = nvar(nvar + 1)/2 = 10nvar = 4 df = p – q = 1



Example 2

Sample covariance matrix:

SN =

3.474   2.826   0.984   0.741

2.826   3.745   0.971   0.817

0.984   0.971   3.136   2.199

0.741   0.817   2.199   2.005

N = 543

I1 I2 I3 I4

I1

I2

I3

I4



Example 2

Model implied covariance matrix:

http://ibgwww.colorado.edu/twins2002/cdrom/HTML/BOOK/node78.htm

Algorithm (‘tracing rules’) based on path model which can be used

to obtain expression for Σ:

model = 

11 + 2𝑒1 12 13 14

21 22 + 2𝑒2 23 24

31 32 33 + 2𝑒3 34

41 42 43 44 + 2𝑒4

I1 I2 I3 I4

I1

I2

I3

I4

http://ibgwww.colorado.edu/twins2002/cdrom/HTML/BOOK/node78.htm


Example 2

model = 

11 + 2𝑒1 12 13 14

21 22 + 2𝑒2 23 24

31 32 33 + 2𝑒3 34

41 42 43 44 + 2𝑒4

I1

I2

I3

I4

I1 I2 I3 I4



Example 2

model = 

11 + 2𝑒1 12 13 14

21 22 + 2𝑒2 23 24

31 32 33 + 2𝑒3 34

41 42 43 44 + 2𝑒4

I1

I2

I3

I4

I1 I2 I3 I4



Example 2

model = 

11 + 2𝑒1 12 13 14

21 22 + 2𝑒2 23 24

31 32 33 + 2𝑒3 34

41 42 43 44 + 2𝑒4

I1

I2

I3

I4

I1 I2 I3 I4



Example

Sample and model implied covariance matrices:

SN = 

3.474

2.826   3.745

0.984   0.969   3.130

0.740   0.815   2.195   2.001

N = 543

3.474

2.826   3.745

0.957   0.995   3.130

0.762   0.792   2.195   2.001

X2 = 5.281

df = 1

p = 0.022



Break



Today

• Intro to Confirmatory Factor Analysis
– EFA vs CFA

– Giving Latent Variables a scale

• Model Fit 1
– Complexity and Degrees of Freedom

– The Chi-Square Test χ2

• Model Fit 2
– Alternative Fit Measures

• Extensions
– Second order factors

– Means and intercepts



Problem with chi-square

Large N → high power to detect small discrepancies →
“always” significant

Small N → low power to detect large discrepancies →
“usually” not significant

Always report the chi-square, df and p, but consider other fit 
indices as well



Approximate fit

Unreliable with small N and small df



Incremental fit

Comparative fit index (CFI)

• Chi-square comparison to baseline model

• 0  CFI  1

• Rules of thumb: <.90 bad fit, >.95 good fit

• Too low when the correlations between 
observed variables are low



Model fit from lavaan
> summary(fit_trust_model_3f, fit.measures = TRUE)

lavaan 0.6-6 ended normally after 45 iterations

Estimator                                         ML

Optimization method                           NLMINB

Number of free parameters                         27

Used       Total

Number of observations                         15448       18187

Model Test User Model:

Test statistic                              9188.922

Degrees of freedom                                51

P-value (Chi-square)                           0.000

Model Test Baseline Model:

Test statistic                             75675.049

Degrees of freedom                                66

P-value                                        0.000

Chi square of your model

Chi square of a rudimentary

default model



What is this baseline model?

Independence model:

Only variances, all covariances fixed @0



Model fit from lavaan

User Model versus Baseline Model:

Comparative Fit Index (CFI)                    0.879

Tucker-Lewis Index (TLI)                       0.844

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)            -357923.209

Loglikelihood unrestricted model (H1)    -353328.748

Akaike (AIC)                              715900.419

Bayesian (BIC)                            716106.840

Sample-size adjusted Bayesian (BIC)       716021.036

Root Mean Square Error of Approximation:

RMSEA                                          0.108

90 Percent confidence interval - lower         0.106

90 Percent confidence interval - upper         0.110

P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

SRMR                                           0.058

<- This emphasizes that we are looking at

relative fit indices, comparing two models



What if the model doesn’t fit?

• Do not interpret the parameter estimates

• Revisit theory

• Or modify model



Factor model with cross loading 
and residual correlation

learning concentr. homework fun acceptance

Motivation Satisfaction

e1 e2 e3 e4 e5

1 1

teacher selfexpr selfeff socialskill

Selfconf

e6 e7 e8 e9

1



Example

Mathematical

Ability

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

1
χ2 (48) = 329.56 , p < .01

RMSEA = .06

CFI = .81



χ2(43) = 63.50, p = .023

RMSEA = .017

CFI = .98

Difference:

χ2 (5) = 229.48, 

p < .01

Mathematical

Ability
Speed

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

1
1

Example



Example



Looking ahead: hybrid models

• After CFA, possible to extend the model

• Include outcome measures

– Combination of factor analysis 

and regression

- advantage?

spatial

visperc

cubes

lozenges

wordmean

paragrap

sentence

err_v

err_c

err_l

err_p

err_s

err_w

verbal

1

1

1

1

1

1

1

1

School 
achievement

d1

Advantages?

•One-go versus step-by-step

•Correct for measurement error

•Test entire model



Second order CFA



Second order CFA

In what circumstances can a second order CFA be useful?

When there are multiple factors which can be explained by 
some common theoretical latent construct (e.g. IQ tests)

- Ideally more than 2 correlated factors, for model 
identification



Critical thoughts

Theory should come first

Second order CFA is more complex model, so fit will be better

Bad fit means that your model does not describe reality well

Good fit does not mean that a second order factor exists 
“in reality”

Instead of a second order CFA, you could just allow the factors 
to correlate



A. PCA

B. EFA

C. CFA

A researcher has developed a new questionnaire that 
should measure someone depression and wants to 
know how many factors there are. Which technique 
would you use?



CFA vs EFA vs PCA

• PCA – summary of variance of items

• EFA – given the data, how many factors are there? 

• CFA – is my theoretical model supported by my data?



Learning check

TRUE or FALSE?

Generally, more factor loadings are estimated in 
a EFA model than in a CFA model



Exploratory factor model

withdrawn somatisation anxiety delinquency aggression

1
1



Confirmatory factor model

withdrawn somatisation anxiety delinquency aggression

Internalizing Externalizing
1

1



Learning check

TRUE or FALSE:

PCA and EFA both assume that indicator 
variables do not have measurement error



PCA

I1

I3

I2

Y1

I4

Y2

Y3

Y4



EFA

Y

I1

I3

I2

e1

e3

e2

I4
e4

Y



Means and Intercepts

• We have modeled only variances and covariances

We have ignored:

1. Means

2. Intercepts

• Every observed variable has a mean

• We can estimate intercepts and latent means

• This will be covered in more detail in the coming
weeks – GLM, multi-group models



Means and Intercepts

• In SEM, you can choose to estimate means 
and intercepts or not

• If you have missing data, you have to
estimate means and intercepts

• Doing this will result in a different number of 
estimated parameters

• But it will not change the degrees of freedom

– We add z observed means, and estimate
z means or intercepts


