TCSM

The General Linear Model

CAUSALITY

- Causality
- General linear model
- ANCOVA
- Assumptions of ANCOVA

Hypothesis, theory and causality

Deductive scientific research is about testing hypotheses.

Hypothesis: specific, testable prediction

- Typically based on theory

Theory: A well-established principle (model) to explain some aspect of the natural world. It typically involves causal relationships.

Hypothesis, theory and causality

Hypothesis, theory and causality

Hypothesis, theory and causality

Hypothesis, theory and causality

SEM Models and Theory

SEM models:

- Statistical model
- Represents theoretical model
- Includes all causal relationships and assumptions
- Tests all hypotheses at once

Definition of causality

X can be a cause of Y if there is:

1. Relationship
2. temporal precedence
3. Nonspurious

Of course, we need a theoretically plausible mechanism for the effect of X on Y.

Prediction VS causation

-Prediction is not the same as causation!
-Prediction only requires "relationship" between X and Y

- Statistical models can reveal relationships; conclusions about causality are based on methods and theory

More on causality

THE WALL STREET JOURNAL

"Do you think all these film crews brought on global warming or did global warming bring on all these film crews?"

Investigating causality

1. Relationship: change in X accompanied by change in Y; \rightarrow e.g., nonzero correlation
2. Temporal precedence: X precedes Y in time;
3. Nonspuriousness: X and Y are associated even if other relevant predictors are eliminated;

Two research traditions

Experimental VS Correlational

Two research traditions

Experimental research

- Meets all requirements for causality
- 1. If you observe a relationship
- 2. Your manipulation occurs prior to the outcome
- 3. Other relevant variables are canceled out through
- Random assignment:
- To ensure any differences between groups are random and cancel out
- Different from random sampling:
- Best way to get representative sample; ensures generalizability

Two research traditions

Correlational research

- Random sample: ensures generalizability
- Measure other relevant variables
- Include these in your analysis
- Their effects are "partialed out"
- Causal statements remain problematic/dangerous/wrong

Why?

Investigating causality

1. Relationship: change in X accompanied by change in Y; \rightarrow e.g., nonzero correlation
2. Temporal precedence: X precedes Y in time;
\rightarrow Longitudinal research
\rightarrow Logic
3. Nonspuriousness: the relationship between X and Y holds even if the influences of other variables are eliminated;
\rightarrow Remove the influence of other variables that may influence the outcome variable

1. Relationship

Isolating the effect

Isolate the effect of \mathbf{X} by removing effect of other relevant variables on Y

We "control" for these variable(s).

Two popular ways of controlling:
I. Experimentally controlling
random assignment in an experiment
II. Statistically controlling
adjusting for third variable in correlational research

GENERAL LINEAR MODEL

- Causality
- General linear model
- ANCOVA
- Assumptions of ANCOVA

Statistical techniques

Experimental research

- (factorial) ANOVA:

DV continuous
IVs categorical ("factors")

- ANCOVA:

DV continuous
IVs categorical ("factors") and continuous ("covariates")
Correlational research

- Multiple regression analysis:

DV continous
IVs interval or ratio measurement level

Insert Web Page

This app allows you to insert secure web pages starting with https:// into the slide deck. Non-secure web pages are not supported for security reasons.

Please enter the URL below.

```
https:// utrecht-university.shinyapps.io/mva_2019_embed_anova/
```

Note: Many popular websites allow secure access. Please click on the preview button to ensure the web page is accessible.

ANOVA vs. multiple regression

ANOVA specification estimates all 3 means:

$$
y_{i}=b_{0} D_{1 i}+b_{1} D_{2 i}+b_{2} D_{3 i}+e_{i}
$$

Regression specification estimates an intercept, and two differences-with-the-intercept:

$$
y_{i}=b_{0}+b_{1} D_{1 i}+b_{2} D_{2 i}+e_{i}
$$

y_{i} : y-value of individual i
b : Regression coefficient (slope)
D: Dummy variables coding for group membership (1: member, 0: not a member) for all individuals i
e_{i} : Prediction error for individual i

Conclusion

ANOVA is a special case/different presentation of multiple regression analysis.

Example analysis: rejection

What is the effect of rejection on strategic shopping?
(shopping to enhance chances of inclusion)

Set up

1. Participant sees video message of their research "partner"
2. Participant records video message for the partner
3. Participant is told that the partner has watched the message, and then quit the experiment.

Rejection manipulation (3 conditions, random assignment):

- rejection: no reason given for partner's departure
- neutral: "Partner forgot an appointment"
- confirming: "Partner forgot an appointment and is really sorry"

Set up

4. Participant is told that they have to wait for a new partner
5. While waiting for new partner, participant is asked to spend 10 dollars in a fake webshop with University-branded products, and neutral products

DV = money spent on University products
IV = condition (factor with 3 levels)

Hypothesis:
Participants in the rejection condition will spend more on University products than those in the neutral or confirming condition, in order to ensure inclusion with the next partner.

ANOVA in R

＞fit＜－aov（Spent～Condition）
$>$ summary（fit）

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
Condition	2	188.7	94.36	10.21	0.000166	＊＊＊
Residuals	56	517.7	9.25			
－－－						
$\begin{aligned} & \text { Signif. c¢ } \\ & 0.1 \text { ' } \end{aligned}$		0 ヤ＊＊＊ン 0.001		－＊＊＇ 0 ．	0.01 ヤ＊ン 0.05	

ANOVA in R

fit <- lm(Spent ~ Condition -1)

summary (fit)

Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Conditionconfirming | -0.5858 | 0.6799 | -0.862 | 0.393 |
| Conditionneutral | -0.7846 | 0.6799 | -1.154 | 0.253 |
| Conditionrejection | 3.1385 | 0.6976 | 4.499 | $3.49 e-05$ |$* * *$

Signif. codes: $0{ }^{\text {'***' } 0.001 ~ ' \star \star ' ~} 0.01$ '*' 0.05 '.' 0.1 ' '

Residual standard error: 3.041 on 56 degrees of freedom Multiple R-squared: 0.285, Adjusted R-squared: 0.2467
F-statistic: 7.439 on 3 and 56 DF, p-value: 0.0002807

ANOVA in R

fit <- lm(Spent ~ Condition)

summary (fit)

Coefficients:

$$
\begin{array}{rrrr}
\text { Estimate } & \text { Std. Error } & \text { t value } & \operatorname{Pr}(>|t|) \\
-0.5858 & 0.6799 & -0.862 & 0.392548 \\
-0.1987 & 0.9615 & -0.207 & 0.837011 \\
3.7243 & 0.9741 & 3.823 & 0.000333 \quad * * *
\end{array}
$$

(Intercept)	-0.5858	0.6799	-0.862	0.392548
Conditionneutral	-0.1987	0.9615	-0.207	0.837011
Conditionrejection	3.7243	0.9741	3.823	0.000333

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Residual standard error: 3.041 on 56 degrees of freedom Multiple R-squared: 0.2671, Adjusted R-squared: 0.241 F-statistic: 10.21 on 2 and 56 DF, p-value: 0.0001662

ANOVA in R

fit <- lm(Spent ~ Condition)
 anova (fit)

Analysis of Variance Table

Response: Spent

$$
\text { Df Sum Sq Mean Sq F value } \operatorname{Pr}(>F)
$$

Condition 2188.72 94.362 10.2070 .0001662 ***
Residuals 56517.739 .245

Signif. codes: 0 '***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1

ANCOVA

- Causality
- General linear model
- ANCOVA
- Assumptions of ANCOVA

Introducing ANCOVA

Used when IVs are categorical and continuous (=covariate).
Also a special case of the GLM.
Developed for experimental data

- Purpose: interpret group differences
- Random assignment: groups do not differ on covariates.
- Controlling for covariates reduces unexplained variance
- Relationship with covariate usually not of interest

F-test in ANOVA

Test statistic for variances: F

- The ratio of the explained part and the unexplained variance

$$
F=\frac{M S_{\mathrm{mod} e l}}{M S_{\text {residual }}}=\frac{S S_{\mathrm{mod} e l} / d f_{\mathrm{mod} e l}}{S S_{\text {residual }} / d f_{\text {residual }}}
$$

```
> fit <- aov(Spent ~ Condition)
```

$>$ summary(fit)

| | Df | Sum Sq | Mean Sq F value | $\operatorname{Pr}(>F)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Condition | 2 | 175.4 | 87.70 | 8.132 | 0.000794 | ***

Sums of squares in ANOVA

Shiny app: https://utrecht-university.shinyapps.io/cj anova/ Between groups sum of squares and df:

AKA model/explained SS

$$
S S_{\text {between }}=\sum n_{k}\left(Y_{k}-Y_{\text {grand }}\right)^{2} \quad d f_{\text {between }}=k-1
$$

Within groups sum of squares and df:
AKA error/residual SS

$$
S S_{\text {within }}=\sum\left(Y_{i k}-Y_{k}\right)^{2} \quad d f_{\text {within }}=k(n-1)
$$

Disconnected from the server.
Reload

F-test in ANCOVA

Including a covariate reduces MS of the residual
Thus, F for the factor becomes larger:

$$
F=\frac{M S_{\text {factor }}}{M S_{\text {residual }}}
$$

```
> fit <- aov(Spent ~ Condition)
```

$>$ summary(fit)

| Condition | 2 | 175.4 | 87.70 | 8.132 | $0.000794 * * *$ | factor |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

ASSUMPTIONS OF ANCOVA

- Causality
- General linear model
- ANCOVA
- Assumptions of ANCOVA

Assumptions

- No interaction between factor and covariate
- Homogeneity of residual variances
- Take care with interpretation of ANCOVA when
- correlation between factor and covariate

ANCOVA vs. multiple regression

ANCOVA $=$ regression with dummies and continuous predictor:

$$
y_{i}=b_{0}+b_{1} \text { Reject }_{i}+b_{2} \text { Conf }_{i}+b_{3} \text { SelfEst }_{i}+e_{i}
$$

Assumption: no interaction between factor and covariate (= regression lines are parallel in the groups).

Assumption can be tested

If the assumption is not met, you could include the interaction in the model

Interaction

Is there an interaction? Shiny app:
https://utrecht-university.shinyapps.io/ANOVA ANCOVA/

ANCOVA without Interaction

ANCOVA without Interaction

ANCOVA without Interaction

ANCOVA without Interaction

G1

ANCOVA with Interaction

ANCOVA with Interaction

ANCOVA with Interaction

ANCOVA vs Multiple regression

- ANCOVA is a special case / presentation of multiple regression
- E.g., when you find a significant interaction in ANCOVA, run regression with dummy variables:

$$
\begin{gathered}
y_{i}=b_{0}+b_{1} * D_{\text {Reject }_{i}}+b_{2} * D_{\text {Conf }_{i}}+b_{3} * \text { SelfEst }_{i}+ \\
b_{4} * D_{\text {Reject }_{i}} * \text { SelfEst }_{i}+ \\
b_{5} * D_{\text {Conf }_{i}} * \text { SelfEst }_{i}+e_{i}
\end{gathered}
$$

- NOTE: Parameters $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)$ still represent group differences in intercepts for Self-Esteem $=0$.

ANCOVA and existing groups

ANCOVA often used to compare existing groups that differ on the covariate

Researchers hope to control for these differences
(= as if the groups are the same on covariate).
Other researchers (e.g., Miller \& Chapman) indicate that ANCOVA cannot be used to investigate existing groups.

Possible problems: 1

Grouping variable may have caused differences on the covariate (= mediation)
"Controlling" for covariate \rightarrow underestimate total effect of Group on Outcome.

Possible problems: 2

Other (non-observed) variables account for differences in Outcome

Controlling for an observed variable does not help.

Possible problems: 3

Extrapolating beyond range of data is risky/impossible:
Can you draw conclusions about a relationship you did not observe?

Covariate

Possible problems: 4

Selecting subgroups that do not differ on the covariate (i.e., form of matching) introduces the problem of regression towards the mean.

Existing groups

How to compare existing groups?

Use multiple regression analysis; instead of claiming that we control for the covariate, consider the covariate as another relevant variable.

More sophisticated: Model the (hypothesized) causal relations between the Ivs

We can use structural equation modeling to compare alternative "data stories" that explain why variables share variance (= are correlated).

Very important!!!

If the factor and the covariate are correlated, this does not mean that there is an interaction;

When there is an interaction, this does not mean the factor and covariate are correlated.

Additional reading

Useful website:
http://www.statsoft.com/Textbook/General-Linear-Models
http://www.statsoft.com/Textbook/Basic-Statistics

