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OUTLINE

▪ Relationships among 3 variables

▪ investigating mediation

▪ testing the indirect (or mediated) effect
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Mediation

Snooping on your teenager leads to 

more parent-child conflict

WHY?

Because snooping interferes with teenagers’ 

autonomy needs
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Mediation

Snooping leads to more parent-child conflict

X Y e
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Mediation

…because snooping frustrates autonomy needs!
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Mediation

The effect of X on Y is (partially) mediated by M

Mediated: Explained by

X Y

M

e

u
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Mediation

X influences Y through a third variable: Mediator M.

High school grades

Bachelor grades

Salary e

u



10

Mediation

X influences Y through a third variable: Mediator M.

High school grades

Bachelor grades

Salary e3e2

Parental SES

e1



Effects in a mediation model
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Direct and indirect effects

The influence of X on Y is (partially) mediated by M, We 

also say: X has an indirect effect on Y

Direct effect of X on Y: a

Indirect effect of X on Y: b*c

Total effect of X on Y: a + (b*c)

X Y

M

e

u

a

b c
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Determine indirect effect using regression:

Approach 1:

1) Simple regression

2) Multiple regression

Indirect effect: 𝑎 − 𝑎′

e

X Y

M

𝑎′

𝑐

Y

𝑎

e

X
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Determine indirect effect in SEM:

Approach 2:

Indirect effect:𝑏 ∗ 𝑐

e

X Y

M

u

𝑎′

𝑐𝑏
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OUTLINE

▪ relationships between 3 variables

▪ investigating mediation

▪ testing the indirect (or mediated) effect
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Investigating mediation: old school

Baron and Kenny steps (cited 14.000+ times!!!). 
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Three steps of B&K

Several regressions, puzzle together the path model:

Step 1: Is X a significant predictor of Y? (a)

Step 2: Is X a significant predictor of M? (b)

Step 3: In model with both M and X as predictors, is 

M a significant predictor of Y? (c). 

Did a decrease?

(or increase?)

X Y

M

e

u

b c

a



18

Some problems with B&K

If there is a suppression effect

(the direct and indirect effects cancel out), then

Step 1 would not show a significant effect

Also: Low power when using B&K three steps
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Investigating mediation: new school

Use Structural Equation Modeling

Advantages:

- easier (run 1 model, or 2 nested models)

- Automatically get direct, indirect and total effects; 

also standardized, and with SEs 

- Easily investigate more complicated mediation, e.g.: 

- multiple mediators of one predictor, 

- multiple predictors with one mediator, 

- multiple outcome variables, 

- latent variables  
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Mediation in SEM

To investigate whether the effect is fully mediated, we 

can do two things:

1: Check the significance of coefficient a 

2: Compare nested models (which is more complex?)

X Y

M

e

u

a

b c

X Y

M

e

u

b c

Model 1 Model 2
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Nested models in SEM

Nested: By constraining (to be equal/to be zero) 

some parameters in model 1, you get model 2. 

Compare nested models with a chi-square diff test,

Δ𝜒2

Both models have a model-implied vcov matrix, ෡𝚺

These are compared to the observed vcov matrix, S

Δ𝜒2 is based on comparing the “distance” between 

S and ෡𝚺𝟏 with the “distance” between S and ෡𝚺𝟐
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Nested models in SEM

• Remember Occam’s razor: 

All else being equal, we should prefer simpler models

• Complex models have more “flexibility” to fit data

• Balance necessary complexity and elegant simplicity

•Model 2 has 1 parameter less; does this simplification 

make the fit significantly worse

• If difference is significant, model 2 isn’t supported by 

the sample covariance matrix
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Nested SEM models: removing path

Is the distance larger?

larger Chi-square

significant result

Model 2 is not an improvement, Model 1 is better

In contrast, a non-significant result

means that Model 2 fits equally well, but is simpler: 

choose model 2



Applied mediation examples
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Aggression in adolescents 
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Cannabis use disorders 
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Emo. intelligence and life satisfaction





Special cases
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Suppressing mediation

Suppression: 

The direct and the indirect are of opposite signs, 

and (partly) cancel each other out.

Intelligence Errors

Boredom

e

u

-

+ +

Note: In case of 

suppression, 

including the 

mediator will 

increase the 

predictive ability 

of X on Y.
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OUTLINE

▪ relationships between 3 variables

▪ investigating mediation

▪ testing the indirect (or mediated) effect

▪Testing a parameter estimate (in general)

▪Testing the indirect effect (Ind := b*c)

▪ Classic: Sobel test - WARNING!

▪ Better: Bootstrapping procedure in SEM 



Testing indirect effects
Introducing bootstrapping
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Testing a parameter estimate

Central limit theorem: 

The sampling distribution for many parameters is 

(approximately) normal. 

The sampling distribution is the distribution we would 

get if we would:

▪Take many samples from the same population  of 

the same size

▪Estimate the parameter of interest (i.e., θ) each time
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Testing a parameter estimate

1) Estimate the parameter in the sample, e.g. T

2) Estimate the SE of the parameter, SET

3) Derive the sampling distribution under the null 

hypothesis (i.e., Θ0=0, SE = SET)

In other words: We draw a normal distribution with 

mean = 0 and sd = SET

We then test: 

How likely is it to get a value for T at least as 

extreme as we observed in our data, IF the null 

hypothesis were true?
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Testing a parameter estimate

https://utrecht-university.shinyapps.io/cjvanlissa_sampling_distribution/

https://utrecht-university.shinyapps.io/cjvanlissa_sampling_distribution/
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Estimate normally distributed?

Population

under H0

sample 1

of n cases
sample 2

of n cases

sample 10000

of n cases
…

estimate θ estimate θ estimate θ
…
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Yes, normally distributed!
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The standard error is an estimate of the standard deviation

of the sampling distribution.

Hence, it can be used to compute a z-statistic and 

matching p-value (under H0: θ=0):

Alternatively, one can compute a 95%-confidence interval 

around the parameter estimate: 

38

Standard error

θSE

θ̂
z =

θSE*96.1θ̂
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Test indirect effect: Sobel test

The sampling distribution for many parameters is 

(approximately) normal. 

Hence a z-test is appropriate. 

Sobel test for an indirect effect is based on the 

assumption that the sampling distribution of the 

product of coefficients (b*c) is normal.
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Normal product distribution

The indirect effect (=b*c) is the product of two 

normally distributed variables.

This does not result in a normally distributed quantity! 

x~N(0,1), y~N(0,1)

 

x~N(2,1), y~N(0,1)

 

 

x~N(2,2), y~N(1,1) x~N(2,2), y~N(-1,1)

 

As a result, the p-

value is incorrect 

(may be too small or 

too large).
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Solution: bootstrapping

We can bootstrap our confidence intervals:

1) Re-sample your data (1000x).

2) Estimate same model on each 

bootstrap sample

3) Treat the distribution of parameters 

across bootstrap samples as a 

sampling distribution

We’ve “empirically derived” the 

sampling distribution
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Basics of bootstrapping

Observed sample

of n cases

Resample 1:

draw n cases 

(with replacement)

Resample 2:

draw n cases 

(with replacement)

Resample 1000:

draw n cases 

(with replacement)

…

Estimate the 

indirect effect:

Estimate the 

indirect effect:

Estimate the 

indirect effect
…
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Testing a parameter estimate

https://mattkmiecik.shinyapps.io/boot-perm-app/

https://mattkmiecik.shinyapps.io/boot-perm-app/


Solution in lavaan: bootstrapping

1000 bootstraps gives us:

• 1000 estimates of every parameter, including indirect effect

• The mean of these 1000 estimates = the parameter estimate

• The SD of these 1000 estimates = the SE of the parameter

• The .025 and .975 quantiles of these 1000 estimates = 

the (non-parametric) 95% confidence interval
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Bootstrap confidence interval

Bootstrap samples approximate the sampling distribution. 

We obtain a lower and upper 

bound of the 95% confidence 

interval.

If zero lies inside this interval, 

we conclude the parameter 

estimate does not differ 

significantly from zero.

Hence, there is no indirect 

effect. 



Model with indirect effects
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Lavaan syntax for indirect effects

model <- ' # direct effect

Y ~ c*X

# mediator

M ~ a*X

Y ~ b*M

# indirect effect (a*b)

ab := a*b

# total effect

total := c + (a*b)

'
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Lavaan output for indirect effects

Regressions:

Estimate  Std.Err z-value  P(>|z|)

Y ~                                                 

X          (c)    0.036    0.104    0.348    0.728

M ~                                                 

X          (a)    0.474    0.103    4.613    0.000

Y ~                                                 

M          (b)    0.788    0.092    8.539    0.000

Variances:

Estimate  Std.Err z-value  P(>|z|)

.Y                 0.898    0.127    7.071    0.000

.M                 1.054    0.149    7.071    0.000

Defined Parameters:

Estimate  Std.Err z-value  P(>|z|)

ab                0.374    0.092    4.059    0.000

total             0.410    0.125    3.287    0.001
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Lavaan syntax for bootstrapped SE

fit <- sem(mediation_model,

data = data,

se = "bootstrap",

bootstrap = 1000)

To obtain the confidence intervals, use the following syntax:

parameterestimates(fit, boot.ci.type = "bca.simple")

lhs op     rhs label   est se     z pvalue ci.lower ci.upper

Y  ~       X     c 0.036 0.116 0.312  0.755   -0.185    0.272

M  ~       X     a 0.474 0.098 4.837  0.000    0.270    0.652

Y  ~       M     b 0.788 0.094 8.361  0.000    0.596    0.967

Y ~~       Y       0.898 0.149 6.044  0.000    0.661    1.238

M ~~       M       1.054 0.178 5.917  0.000    0.760    1.488

X ~~       X       0.999 0.000    NA     NA 0.999    0.999

ab :=     a*b    ab 0.374 0.087 4.314  0.000    0.213    0.559

total  := c+(a*b) total 0.410 0.139 2.942  0.003    0.140    0.689

Zero is not in C.I.: 

Indirect effect 

significant
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P-value based on bootstrapping

P-value is based on bootstrapped standard errors if 

you specify se = “bootstrap”
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Other use of bootstrapping

Bootstrapping is also useful:

- if sample size is small, such that normal 

approximations are not appropriate

- if the data are (multivariate) non-normally

distributed

Some people say: Bootstrap everything, all the time.

This allows you to relax the assumption of normality



Different causal models
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Causality

• You have several correlated variables

• You’re imposing a “causal structure” on the variables

• E.g., these two predictors (IVs) are correlated

• You can ask why they are correlated.

High school grades

Bachelor grades

Salary e
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Causality

• These two predictors (IVs) are correlated

• You may have a theory about why they are correlated:

• X1 may influence X2 directly (or “reverse causality”)

• Alternatively: A third variable X3 is responsible for the 

correlation. 

High school grades

Bachelor grades

Salary e
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Causality

• These two predictors (IVs) are correlated

• You may have a theory about why they are correlated:

• X1 may influence X2 directly (or “reverse causality”)

• Alternatively: A third variable X3 is responsible for the 

correlation. 

High school grades

Bachelor grades

Salary e

Intelligence

e

e
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Confounders

A confounder is a third variable that once it is 

included, changes the relationship between X and Y.

X Y

C

u e
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Spurious effects

X is associated with Y, because Z causes X and Y. 

The relationship between X and Y is spurious. 

Warning: If you analyze these data with mediation 

model, you will probably find significant mediation. 

Why?

Ice cream 

sells

Number of 

burglaries

+
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Spurious effects?

Babies born 

in area

Number of 

storks in area
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Spurious effects?

Babies born 

in area

Number of 

storks in area

+?



Causality

• If I fit a mediation model

• And the model has good fit

• Can I conclude that the effect of X on Y is indeed explained/mediated 
by M?



Causality

• If I fit a mediation model

• And the model has good fit

• Can I conclude that the effect of X on Y is indeed explained/mediated 
by M?

• NO! Causality is always in the METHODS (or theory), not in the 
STATISTICS

• My model reflects my theory

• Different causal models will have identical fit (if you flip some of the 
paths around)


