Wraps adjustmentSets to construct a dataset with covariates that (asymptotically) allow unbiased estimation of causal effects from observational data.
Usage
select_controls(
x,
data,
exposure = NULL,
outcome = NULL,
which_set = c("first", "sample", "all"),
...
)
Arguments
- x
An input graph of class
dagitty
.- data
A
data.frame
or object coercible byas.data.frame()
.- exposure
Atomic character, name of the exposure variable.
- outcome
Atomic character, name of the outcome variable.
- which_set
Atomic character, indicating which set of covariates to select in case there are multiple. Valid choices are in
c("first", "sample", "all")
, see Value.- ...
Other arguments passed to adjustmentSets
Value
If which_set = "all"
, returns a list of data.frames
to allow for
sensitivity analyses. Otherwise, returns a data.frame
.
Examples
dag <- dagitty::dagitty('dag {x -> y}')
df <- data.frame(x = rnorm(10), y = rnorm(10))
df1 <- select_controls(dag, df, exposure = "x", outcome = "y")
class(df1) == "data.frame"
#> [1] TRUE
df2 <- select_controls(dag, df, exposure = "x", outcome = "y", which_set = "sample")
class(df2) == "data.frame"
#> [1] TRUE
lst1 <- select_controls(dag, df, exposure = "x", outcome = "y", which_set = "all")
class(lst1) == "list"
#> [1] TRUE