This function simplifies the specification of latent class models: models that estimate membership of a categorical latent variable based on binary or ordinal indicators.
mx_lca(data = NULL, classes = 1L, run = TRUE, ...)
The data.frame to be used for model fitting.
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., classes = 1:6
,
Logical, whether or not to run the model. If run = TRUE
,
the function calls OpenMx::mxTryHardOrdinal()
.
Additional arguments, passed to functions.
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
if (FALSE) { # \dontrun{
df <- data_mix_ordinal
df[1:4] <- lapply(df, ordered)
mx_lca(data = df,
classes = 2) -> res
} # }