Takes a model object, and formats it as a publication-ready table.
Usage
table_results(
x,
columns = c("label", "est_sig", "se", "pval", "confint", "group", "level"),
digits = 2,
format_numeric = TRUE,
...
)
Arguments
- x
A model object for which a method exists.
- columns
A character vector of columns to retain from the results section. If this is set to
NULL
, all available columns are returned. Defaults toc("label", "est_sig", "se", "pval", "confint", "group", "level")
. These correspond to 1) the parameter label, 2) estimate column with significance asterisks appended (* <.05, ** < .01, *** < .001); 3) standard error, 4) p-value, 5) a formatted confidence interval, 6) grouping variable (if available), 7) level variable for multilevel models, if available.- digits
Number of digits to round to when formatting numeric columns.
- format_numeric
Logical, indicating whether or not to format numeric columns. Defaults to
TRUE
.- ...
Logical expressions used to filter the rows of results returned.
See also
Other Reporting tools:
conf_int()
,
est_sig()
,
table_fit()
,
table_prob()
Examples
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model,
data = HolzingerSwineford1939,
group = "school")
table_results(fit)
#> label est_sig se pval confint group
#> 1 visual.BY.x1.Pasteur 1.00 0.00 <NA> [1.00, 1.00] Pasteur
#> 2 visual.BY.x2.Pasteur 0.39** 0.12 0.00 [0.15, 0.63] Pasteur
#> 3 visual.BY.x3.Pasteur 0.57*** 0.14 0.00 [0.30, 0.84] Pasteur
#> 4 textual.BY.x4.Pasteur 1.00 0.00 <NA> [1.00, 1.00] Pasteur
#> 5 textual.BY.x5.Pasteur 1.18*** 0.10 0.00 [0.98, 1.38] Pasteur
#> 6 textual.BY.x6.Pasteur 0.87*** 0.08 0.00 [0.72, 1.03] Pasteur
#> 7 speed.BY.x7.Pasteur 1.00 0.00 <NA> [1.00, 1.00] Pasteur
#> 8 speed.BY.x8.Pasteur 1.12*** 0.28 0.00 [0.58, 1.67] Pasteur
#> 9 speed.BY.x9.Pasteur 0.92*** 0.22 0.00 [0.48, 1.36] Pasteur
#> 10 Variances.x1.Pasteur 0.30 0.23 0.20 [-0.16, 0.75] Pasteur
#> 11 Variances.x2.Pasteur 1.33*** 0.16 0.00 [1.02, 1.64] Pasteur
#> 12 Variances.x3.Pasteur 0.99*** 0.14 0.00 [0.72, 1.26] Pasteur
#> 13 Variances.x4.Pasteur 0.43*** 0.07 0.00 [0.29, 0.56] Pasteur
#> 14 Variances.x5.Pasteur 0.46*** 0.09 0.00 [0.29, 0.62] Pasteur
#> 15 Variances.x6.Pasteur 0.29*** 0.05 0.00 [0.19, 0.39] Pasteur
#> 16 Variances.x7.Pasteur 0.82*** 0.12 0.00 [0.58, 1.06] Pasteur
#> 17 Variances.x8.Pasteur 0.51*** 0.12 0.00 [0.28, 0.74] Pasteur
#> 18 Variances.x9.Pasteur 0.68*** 0.10 0.00 [0.48, 0.88] Pasteur
#> 19 Variances.visual.Pasteur 1.10*** 0.28 0.00 [0.55, 1.64] Pasteur
#> 20 Variances.textual.Pasteur 0.89*** 0.15 0.00 [0.60, 1.19] Pasteur
#> 21 Variances.speed.Pasteur 0.35** 0.13 0.01 [0.10, 0.60] Pasteur
#> 22 visual.WITH.textual.Pasteur 0.48*** 0.11 0.00 [0.27, 0.69] Pasteur
#> 23 visual.WITH.speed.Pasteur 0.19* 0.08 0.02 [0.03, 0.34] Pasteur
#> 24 textual.WITH.speed.Pasteur 0.18** 0.07 0.01 [0.05, 0.32] Pasteur
#> 25 Means.x1.Pasteur 4.94*** 0.09 0.00 [4.76, 5.13] Pasteur
#> 26 Means.x2.Pasteur 5.98*** 0.10 0.00 [5.79, 6.18] Pasteur
#> 27 Means.x3.Pasteur 2.49*** 0.09 0.00 [2.31, 2.67] Pasteur
#> 28 Means.x4.Pasteur 2.82*** 0.09 0.00 [2.64, 3.00] Pasteur
#> 29 Means.x5.Pasteur 4.00*** 0.10 0.00 [3.79, 4.20] Pasteur
#> 30 Means.x6.Pasteur 1.92*** 0.08 0.00 [1.77, 2.08] Pasteur
#> 31 Means.x7.Pasteur 4.43*** 0.09 0.00 [4.26, 4.60] Pasteur
#> 32 Means.x8.Pasteur 5.56*** 0.08 0.00 [5.41, 5.72] Pasteur
#> 33 Means.x9.Pasteur 5.42*** 0.08 0.00 [5.26, 5.57] Pasteur
#> 34 Means.visual.Pasteur 0.00 0.00 <NA> [0.00, 0.00] Pasteur
#> 35 Means.textual.Pasteur 0.00 0.00 <NA> [0.00, 0.00] Pasteur
#> 36 Means.speed.Pasteur 0.00 0.00 <NA> [0.00, 0.00] Pasteur
#> 37 visual.BY.x1.Grant-White 1.00 0.00 <NA> [1.00, 1.00] Grant-White
#> 38 visual.BY.x2.Grant-White 0.74*** 0.15 0.00 [0.43, 1.04] Grant-White
#> 39 visual.BY.x3.Grant-White 0.92*** 0.17 0.00 [0.60, 1.25] Grant-White
#> 40 textual.BY.x4.Grant-White 1.00 0.00 <NA> [1.00, 1.00] Grant-White
#> 41 textual.BY.x5.Grant-White 0.99*** 0.09 0.00 [0.82, 1.16] Grant-White
#> 42 textual.BY.x6.Grant-White 0.96*** 0.08 0.00 [0.80, 1.13] Grant-White
#> 43 speed.BY.x7.Grant-White 1.00 0.00 <NA> [1.00, 1.00] Grant-White
#> 44 speed.BY.x8.Grant-White 1.23*** 0.19 0.00 [0.86, 1.59] Grant-White
#> 45 speed.BY.x9.Grant-White 1.06*** 0.16 0.00 [0.74, 1.38] Grant-White
#> 46 Variances.x1.Grant-White 0.71*** 0.13 0.00 [0.47, 0.96] Grant-White
#> 47 Variances.x2.Grant-White 0.90*** 0.12 0.00 [0.66, 1.14] Grant-White
#> 48 Variances.x3.Grant-White 0.56*** 0.10 0.00 [0.36, 0.76] Grant-White
#> 49 Variances.x4.Grant-White 0.32*** 0.06 0.00 [0.19, 0.44] Grant-White
#> 50 Variances.x5.Grant-White 0.42*** 0.07 0.00 [0.28, 0.56] Grant-White
#> 51 Variances.x6.Grant-White 0.41*** 0.07 0.00 [0.27, 0.54] Grant-White
#> 52 Variances.x7.Grant-White 0.60*** 0.09 0.00 [0.42, 0.78] Grant-White
#> 53 Variances.x8.Grant-White 0.40*** 0.09 0.00 [0.22, 0.59] Grant-White
#> 54 Variances.x9.Grant-White 0.53*** 0.09 0.00 [0.36, 0.71] Grant-White
#> 55 Variances.visual.Grant-White 0.60*** 0.16 0.00 [0.29, 0.92] Grant-White
#> 56 Variances.textual.Grant-White 0.94*** 0.15 0.00 [0.64, 1.24] Grant-White
#> 57 Variances.speed.Grant-White 0.46*** 0.12 0.00 [0.23, 0.69] Grant-White
#> 58 visual.WITH.textual.Grant-White 0.41*** 0.10 0.00 [0.22, 0.60] Grant-White
#> 59 visual.WITH.speed.Grant-White 0.28*** 0.08 0.00 [0.13, 0.42] Grant-White
#> 60 textual.WITH.speed.Grant-White 0.22** 0.07 0.00 [0.08, 0.37] Grant-White
#> 61 Means.x1.Grant-White 4.93*** 0.10 0.00 [4.74, 5.12] Grant-White
#> 62 Means.x2.Grant-White 6.20*** 0.09 0.00 [6.02, 6.38] Grant-White
#> 63 Means.x3.Grant-White 2.00*** 0.09 0.00 [1.83, 2.16] Grant-White
#> 64 Means.x4.Grant-White 3.32*** 0.09 0.00 [3.13, 3.50] Grant-White
#> 65 Means.x5.Grant-White 4.71*** 0.10 0.00 [4.52, 4.90] Grant-White
#> 66 Means.x6.Grant-White 2.47*** 0.09 0.00 [2.28, 2.65] Grant-White
#> 67 Means.x7.Grant-White 3.92*** 0.09 0.00 [3.75, 4.09] Grant-White
#> 68 Means.x8.Grant-White 5.49*** 0.09 0.00 [5.32, 5.66] Grant-White
#> 69 Means.x9.Grant-White 5.33*** 0.09 0.00 [5.16, 5.49] Grant-White
#> 70 Means.visual.Grant-White 0.00 0.00 <NA> [0.00, 0.00] Grant-White
#> 71 Means.textual.Grant-White 0.00 0.00 <NA> [0.00, 0.00] Grant-White
#> 72 Means.speed.Grant-White 0.00 0.00 <NA> [0.00, 0.00] Grant-White