This function is a wrapper around mx_mixture
, adding the
default arguments of lavaan::growth()
to simplify the
specification of growth mixture models. This function is only
useful if all the latent variables in the model are growth factors.
mx_growth_mixture(model, classes = 1L, data = NULL, run = TRUE, ...)
Syntax for the model; either a character string, or a list of
character strings, or a list of mxModel
objects. See Details.
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., classes = 1:6
,
classes = c(1:4, 6:8)
.
The data.frame to be used for model fitting.
Logical, whether or not to run the model. If run = TRUE
,
the function calls mixture_starts
and run_mx
.
Additional arguments, passed to functions.
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
if (FALSE) { # \dontrun{
data("empathy")
df <- empathy[1:6]
mx_growth_mixture(model = "i =~ 1*ec1 + 1*ec2 + 1*ec3 +1*ec4 +1*ec5 +1*ec6
s =~ 0*ec1 + 1*ec2 + 2*ec3 +3*ec4 +4*ec5 +5*ec6
ec1 ~~ vec1*ec1
ec2 ~~ vec2*ec2
ec3 ~~ vec3*ec3
ec4 ~~ vec4*ec4
ec5 ~~ vec5*ec5
ec6 ~~ vec6*ec6
i ~~ 0*i
s ~~ 0*s
i ~~ 0*s",
classes = 2,
data = df) -> res
} # }